000256486 001__ 256486
000256486 005__ 20220930130049.0
000256486 0247_ $$2doi$$a10.1371/journal.pone.0141768
000256486 0247_ $$2Handle$$a2128/9381
000256486 0247_ $$2WOS$$aWOS:000363920300081
000256486 037__ $$aFZJ-2015-06382
000256486 082__ $$a500
000256486 1001_ $$0P:(DE-HGF)0$$aKrämer, Christina E. M.$$b0
000256486 245__ $$aNon-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester
000256486 260__ $$aLawrence, Kan.$$bPLoS$$c2015
000256486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457697353_320
000256486 3367_ $$2DataCite$$aOutput Types/Journal article
000256486 3367_ $$00$$2EndNote$$aJournal Article
000256486 3367_ $$2BibTeX$$aARTICLE
000256486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256486 3367_ $$2DRIVER$$aarticle
000256486 520__ $$aPhase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring of esterase activity and calcein efflux changes in growing wild type bacteria. The fluorescent conversion product of calcein acetoxymethyl ester (CAM) and its efflux indicates the metabolic activity of cells grown under different conditions at real-time. The dynamic conversion of CAM and the active efflux of fluorescent calcein were analyzed by combining microfluidic single cell cultivation technology and fluorescence time lapse microscopy. Thus, an instantaneous and non-invasive sensing method for apparent esterase activity was created without the requirement of genetic modification or harmful procedures. The metabolic activity sensing method consisting of esterase activity and calcein secretion was demonstrated in two applications. Firstly, growing colonies of our model organism Corynebacterium glutamicum were confronted with intermittent nutrient starvation by interrupting the supply of iron and carbon, respectively. Secondly, bacteria were exposed for one hour to fatal concentrations of antibiotics. Bacteria could be distinguished in growing and non-growing cells with metabolic activity as well as non-growing and non-fluorescent cells with no detectable esterase activity. Microfluidic single cell cultivation combined with high temporal resolution time-lapse microscopy facilitated monitoring metabolic activity of stressed cells and analyzing their descendants in the subsequent recovery phase. Results clearly show that the combination of CAM with a sampling free microfluidic approach is a powerful tool to gain insights in the metabolic activity of growing and non-growing bacteria.
000256486 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000256486 588__ $$aDataset connected to CrossRef
000256486 7001_ $$0P:(DE-Juel1)165639$$aSingh, Abhijeet$$b1
000256486 7001_ $$0P:(DE-Juel1)145516$$aHelfrich, Stefan$$b2
000256486 7001_ $$0P:(DE-Juel1)143612$$aGrünberger, Alexander$$b3
000256486 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b4
000256486 7001_ $$0P:(DE-Juel1)129051$$aNöh, Katharina$$b5
000256486 7001_ $$0P:(DE-Juel1)140195$$aKohlheyer, Dietrich$$b6$$eCorresponding author
000256486 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0141768$$gVol. 10, no. 10, p. e0141768 -$$n10$$pe0141768$$tPLoS one$$v10$$x1932-6203$$y2015
000256486 8564_ $$uhttps://juser.fz-juelich.de/record/256486/files/journal.pone.0141768.pdf$$yOpenAccess
000256486 8767_ $$92015-11-06$$d2015-11-06$$eAPC$$jDeposit$$lDeposit: PLoS$$zUSD 1350,-
000256486 909CO $$ooai:juser.fz-juelich.de:256486$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000256486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256486 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000256486 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000256486 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000256486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2014
000256486 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000256486 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256486 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256486 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256486 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256486 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256486 9141_ $$y2015
000256486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145516$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143612$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129051$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140195$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000256486 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000256486 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000256486 9801_ $$aUNRESTRICTED
000256486 9801_ $$aFullTexts
000256486 980__ $$ajournal
000256486 980__ $$aVDB
000256486 980__ $$aI:(DE-Juel1)IBG-1-20101118
000256486 980__ $$aUNRESTRICTED
000256486 980__ $$aAPC