000256540 001__ 256540
000256540 005__ 20210129220733.0
000256540 0247_ $$2doi$$a10.1111/ejss.12288
000256540 0247_ $$2Handle$$a2128/9433
000256540 0247_ $$2WOS$$aWOS:000364312500001
000256540 037__ $$aFZJ-2015-06424
000256540 082__ $$a630
000256540 1001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b0$$eCorresponding author
000256540 245__ $$aThe δ$_{18}$O signatures of HCl-extractable soil phosphates: methodological challenges and evidence of the cycling of biological P in arable soil
000256540 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2015
000256540 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1447853727_4296
000256540 3367_ $$2DataCite$$aOutput Types/Journal article
000256540 3367_ $$00$$2EndNote$$aJournal Article
000256540 3367_ $$2BibTeX$$aARTICLE
000256540 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256540 3367_ $$2DRIVER$$aarticle
000256540 520__ $$aSoil phosphates exchange oxygen atoms rapidly with soil water once recycled by intracellular enzymes, thereby approaching an equilibrium δ18OP signature that depends on ambient temperature and the δ18OW signature of soil water. We hypothesized that in the topsoil, phosphates reach this equilibrium δ18OP signature even if amended by different fertilizers. In the subsoil, however, there might be phosphates with a smaller δ18OP value than that represented by the isotopic equilibrium value, a condition that could exist in the case of limited biological P cycling only. We tested these hypotheses for the HCl-extractable P pool of the Hedley fractionation scheme of arable soil in Germany, which integrates over extended time-scales of the soil P cycle. We sampled several types of fertilizer, the surface soil that received these fertilizer types and composites from a Haplic Luvisol depth profile under long-term agricultural practice. Organic fertilizers had significantly smaller δ18OP values than mineral fertilizers. Intriguingly, the fields fertilized organically also tended to have smaller δ18OP signatures than other types of surface soil, which calls into question full isotopic equilibrium at all sites. At depths below 50 cm, the soil δ18OP values were even depleted relative to the values calculated for isotopic equilibrium. This implies that HCl-extractable phosphates in different soil horizons are of different origins. In addition, it supports the assumption that biological cycling of P by intracellular microbial enzymes might have been relatively inefficient in the deeper subsoil. At depths of 50–80 cm, there was a transition zone of declining δ18OP values, which might be regarded as the first evidence that the degree of biological P cycling changed at this depth interval
000256540 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000256540 7001_ $$0P:(DE-HGF)0$$aAntar, P.$$b1
000256540 7001_ $$0P:(DE-HGF)0$$aKleeberg, I.$$b2
000256540 7001_ $$0P:(DE-HGF)0$$aOelmann, Y.$$b3
000256540 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b4
000256540 7001_ $$0P:(DE-HGF)0$$aAlt, F.$$b5
000256540 7001_ $$0P:(DE-Juel1)129496$$aLewandowski, Hans$$b6
000256540 7001_ $$0P:(DE-HGF)0$$aPätzold, S.$$b7
000256540 7001_ $$0P:(DE-HGF)0$$aBarej, J. A. M.$$b8
000256540 773__ $$0PERI:(DE-600)2020243-X$$a10.1111/ejss.12288$$n6$$p965-972$$tEuropean journal of soil science$$v66$$x0022-4588$$y2015
000256540 8564_ $$uhttps://juser.fz-juelich.de/record/256540/files/ejss12288.pdf$$yOpenAccess
000256540 8564_ $$uhttps://juser.fz-juelich.de/record/256540/files/ejss12288.gif?subformat=icon$$xicon$$yOpenAccess
000256540 8564_ $$uhttps://juser.fz-juelich.de/record/256540/files/ejss12288.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256540 8564_ $$uhttps://juser.fz-juelich.de/record/256540/files/ejss12288.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256540 8564_ $$uhttps://juser.fz-juelich.de/record/256540/files/ejss12288.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256540 8564_ $$uhttps://juser.fz-juelich.de/record/256540/files/ejss12288.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256540 909CO $$ooai:juser.fz-juelich.de:256540$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000256540 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256540 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000256540 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J SOIL SCI : 2014
000256540 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000256540 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256540 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256540 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256540 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256540 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256540 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000256540 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256540 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000256540 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256540 9141_ $$y2015
000256540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129496$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000256540 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000256540 920__ $$lyes
000256540 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000256540 980__ $$ajournal
000256540 980__ $$aVDB
000256540 980__ $$aUNRESTRICTED
000256540 980__ $$aI:(DE-Juel1)IBG-3-20101118
000256540 9801_ $$aUNRESTRICTED
000256540 9801_ $$aFullTexts