001     256540
005     20210129220733.0
024 7 _ |2 doi
|a 10.1111/ejss.12288
024 7 _ |2 Handle
|a 2128/9433
024 7 _ |2 WOS
|a WOS:000364312500001
037 _ _ |a FZJ-2015-06424
082 _ _ |a 630
100 1 _ |0 P:(DE-Juel1)129427
|a Amelung, Wulf
|b 0
|e Corresponding author
245 _ _ |a The δ$_{18}$O signatures of HCl-extractable soil phosphates: methodological challenges and evidence of the cycling of biological P in arable soil
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1447853727_4296
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Soil phosphates exchange oxygen atoms rapidly with soil water once recycled by intracellular enzymes, thereby approaching an equilibrium δ18OP signature that depends on ambient temperature and the δ18OW signature of soil water. We hypothesized that in the topsoil, phosphates reach this equilibrium δ18OP signature even if amended by different fertilizers. In the subsoil, however, there might be phosphates with a smaller δ18OP value than that represented by the isotopic equilibrium value, a condition that could exist in the case of limited biological P cycling only. We tested these hypotheses for the HCl-extractable P pool of the Hedley fractionation scheme of arable soil in Germany, which integrates over extended time-scales of the soil P cycle. We sampled several types of fertilizer, the surface soil that received these fertilizer types and composites from a Haplic Luvisol depth profile under long-term agricultural practice. Organic fertilizers had significantly smaller δ18OP values than mineral fertilizers. Intriguingly, the fields fertilized organically also tended to have smaller δ18OP signatures than other types of surface soil, which calls into question full isotopic equilibrium at all sites. At depths below 50 cm, the soil δ18OP values were even depleted relative to the values calculated for isotopic equilibrium. This implies that HCl-extractable phosphates in different soil horizons are of different origins. In addition, it supports the assumption that biological cycling of P by intracellular microbial enzymes might have been relatively inefficient in the deeper subsoil. At depths of 50–80 cm, there was a transition zone of declining δ18OP values, which might be regarded as the first evidence that the degree of biological P cycling changed at this depth interval
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Antar, P.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Kleeberg, I.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Oelmann, Y.
|b 3
700 1 _ |0 P:(DE-Juel1)129567
|a Lücke, Andreas
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Alt, F.
|b 5
700 1 _ |0 P:(DE-Juel1)129496
|a Lewandowski, Hans
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Pätzold, S.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Barej, J. A. M.
|b 8
773 _ _ |0 PERI:(DE-600)2020243-X
|a 10.1111/ejss.12288
|n 6
|p 965-972
|t European journal of soil science
|v 66
|x 0022-4588
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256540/files/ejss12288.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256540/files/ejss12288.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256540/files/ejss12288.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256540/files/ejss12288.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256540/files/ejss12288.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256540/files/ejss12288.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256540
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129427
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129567
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129496
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b EUR J SOIL SCI : 2014
915 _ _ |0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21