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Abstract. The Asian summer monsoon involves complex
transport patterns with large-scale redistribution of trace
gases in the upper troposphere and lower stratosphere
(UTLS). We employ the global chemistry—climate model
ECHAMS5-HAMMOZ in order to evaluate the transport
pathways and the contributions of nitrogen oxide species
peroxyacetyl nitrate (PAN), NO, and HNOj3 from vari-
ous monsoon regions, to the UTLS over southern Asia
and vice versa. Simulated long-term seasonal mean mix-
ing ratios are compared with trace gas retrievals from the
Michelson Interferometer for Passive Atmospheric Sounding
aboard ENVISAT(MIPAS-E) and aircraft campaigns during
the monsoon season (June—September) in order to evaluate
the model’s ability to reproduce these transport patterns.
The model simulations show that there are three re-
gions which contribute substantial pollution to the South
Asian UTLS: the Asian summer monsoon (ASM), the North
American monsoon (NAM) and the West African mon-
soon (WAM). However, penetration due to ASM convection
reaches deeper into the UTLS compared to NAM and WAM
outflow. The circulation in all three monsoon regions dis-
tributes PAN into the tropical latitude belt in the upper tro-
posphere (UT). Remote transport also occurs in the extrat-
ropical UT where westerly winds drive North American and
European pollutants eastward where they can become part of
the ASM convection and lifted into the lower stratosphere.
In the lower stratosphere the injected pollutants are trans-

ported westward by easterly winds. Sensitivity experiments
with ECHAMS-HAMMOZ for simultaneous NO, and non-
methane volatile organic compounds (NMVOCs) emission
change (—10 %) over ASM, NAM and WAM confirm simi-
lar transport. Our analysis shows that a 10 % change in Asian
emissions transports ~ 5-30 ppt of PAN in the UTLS over
Asia, ~ 1-10ppt of PAN in the UTLS of northern subtrop-
ics and mid-latitudes, ~ 7—10 ppt of HNO3 and ~ 1-2 ppb of
ozone in UT over Asia. Comparison of emission change over
Asia, North America and Africa shows that the highest trans-
port of HNOs3 and ozone occurs in the UT over Asia and least
over Africa.

The intense convective activity in the monsoon regions is
associated with lightning and thereby the formation of addi-
tional NO,. This also affects the distribution of PAN in the
UTLS. Simulations with and without lightning show an in-
crease in the concentrations of PAN (~ 40 %), HNO3 (75%),
NO, (70 %) and ozone (30 %) over the regions of convec-
tive transport. Lightning-induced production of these species
is higher over equatorial Africa and America compared to
the ASM region. This indicates that the contribution of an-
thropogenic emissions to PAN in the UTLS over the ASM is
higher than that of lightning.
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1 Introduction

Deep monsoon convection plays a key role in venting chem-
ical constituents from the boundary layer and their export
from source regions (Dickerson et al., 1987). The largest re-
gional monsoon systems are the North American monsoon
(NAM), Asian summer monsoon (ASM), western North Pa-
cific monsoon (WNPM), South American monsoon (SAM),
West African monsoon (WAM) and the Australian monsoon
(AUSM) (Chang et al., 2011). Recent observation and mod-
eling studies indicate that the Asian summer monsoon (Park
et al., 2004, 2007; Li et al., 2005; Randel and Park, 2006;
Fu et al., 2006; Xiong et al., 2009; Randel et al., 2010; Fad-
navis et al., 2013), the North American monsoon (Schmitz
and Mullen 1996; Collier and Zhang, 2006; Barth et al.,
2012) and the West African monsoon (Bouarar et al., 2011)
play important roles in the transport of chemical constituents
out of the boundary layer into the Northern Hemisphere
in the upper troposphere (UT). A number of studies have
documented that large amounts of pollution from Asia are
transported across the tropopause (Park et al., 2007; Fu et
al., 2006); however, transport from other monsoon systems
(WAM, NAM) and their contribution to Asia have so far re-
ceived less attention. Until now there has been no attempt
to assess the relative contributions from these source regions
and to analyze the transport patterns including possible re-
circulation within one consistent model framework. Prior
model simulations suggest that pollutants transported from
the Asian monsoon region can contribute substantially to the
budgets of stratospheric ozone, NO, and water vapor (Ran-
del et al., 2010). Ozone formation in the anticyclone is also
enhanced by transport of pollution plumes from the North
American monsoon which are rich in volatile organic com-
pounds (VOCs) (Li et al., 2005; Zhang et al., 2008; Choi et
al., 2009; Barth et al., 2012). The deep monsoon convection
over West Africa transports central African emissions to the
upper troposphere and lower stratosphere (UTLS), leading to
large ozone changes in the lower stratosphere (Bouarar et al.,
2011). A number of studies have reported transport of chem-
ical constituents into the UTLS due to the Asian monsoon
convection, while less attention has been paid to deep con-
vective transport from North/South America and West Africa
to the lower stratosphere and to their relative contributions to
the UTLS composition over the ASM region.

This study investigates the transport patterns and relative
contributions to the Asian monsoon anticyclone of three oxi-
dized nitrogen species, namely peroxyacetyl nitrate (PAN),
NO, (the sum of NO and NO;) and nitric acid (HNO3).
PAN is a secondary pollutant that marks the transport and
conversion of surface NO, after it is emitted. The focus of
this study is placed on PAN as this species has a long life-
time (90—180 days) in the UT and can be favorably observed
by satellite instruments. At the same time, its short chemical
lifetime in the lower troposphere (not longer than 30 days)
results in a much tighter association between the emissions
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regions of its precursors and transport compared to species
such as carbon monoxide (CO). The much longer chemical
lifetime of CO in the lower troposphere allows it to reach
the UTLS via circuitous pathways that are not accessible to
PAN. In contrast, PAN is a tracer that allows for a clearer
identification of NO, pollution transport pathways between
the surface and the UTLS. We perform NO, and NMVOCs
(non-methane volatile organic compounds) emission sensi-
tivity simulations (where emissions of NO, and NMVOCs
were simultaneously reduced by 10 %) in order to investigate
the relative contributions from Asia, Africa and America to
the PAN, HNO3 and O3 concentrations in the UTLS.

PAN is formed through the oxidation of NMVOCs in
the presence of NO, (Fischer et al., 2014). It is primarily
formed after oxidation of acetaldehyde (CH3CHO) or af-
ter photolysis of acetone (CH3COCH3) and methyl glyoxal
(CH3COCHO), all of which are oxidation products of vari-
ous NMVOCs. The actual formation of PAN proceeds in the
reaction of the peroxy acetyl radical (CH3CO3) with NO;.
This reaction is reversible and the thermal decomposition of
PAN back to CH3CO3 and NO; is the main sink of PAN, al-
though in the UTLS, PAN photolysis becomes the dominant
loss process. Two minor loss processes of PAN are reactions
with OH and dry deposition (Talukdar et al., 1995; Fischer
et al., 2014). As stated by Fischer et al. (2014) global, bio-
genic VOCs like isoprene and terpenes, contribute most to
PAN formation, but in the context of our study it is important
to note that the oxidation of many alkanes and alkenes which
are emitted from anthropogenic sources lead to PAN forma-
tion as well. The major anthropogenic sources of NMVOCs
are the emissions from fossil fuel and biofuel combustion and
from industrial solvents (Tang et al., 2009). Biomass burn-
ing, biogenic and soil emissions also contribute to NMVOC
and NO, production. Anthropogenic sources are dominant
in the extratropical Northern Hemisphere outside the spring
season. In spring, when surface PAN peaks, biogenic and an-
thropogenic NMVOC:s species are responsible for ~ 50 % of
the PAN burden.

In the UT, lightning can add substantial amounts of NO,
and thus lead to additional PAN production if NMVOC
precursors are present, e.g., from convective uplifting from
the boundary layer (Tie et al., 2001). The estimated global
NO, production by lightning is ~3-5TgNyear~! (Schu-
mann and Huntrieser, 2007; Martin et al., 2007; Murray et
al., 2012). Strong lightning activity during ASM, NAM and
WAM (Shepon, et al., 2007; Evett et al., 2008; Ranalkar and
Chaudhari, 2009; Barret et al., 2010; Penki and Kamra, 2013)
hence contributes to PAN production in the UTLS. The esti-
mated increase in PAN is ~20-30 % due to NO, enhance-
ment by lightning (Tie et al., 2001).

The thermal decomposition rate of PAN is highly
temperature-dependent. In the UTLS, temperatures are suf-
ficiently low to prevent thermal decomposition of PAN and
therefore the chemical lifetime of PAN in this region is
~90-180 days (Arnold and Hauck, 1985). The PAN lifetime
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in our ECHAMS-HAMMOZ simulations varies between
80 days and 170 days in the tropical UTLS. Several studies
(Tereszchuk et al., 2013; Glatthor et al., 2007; Singh et al.,
1987) have reported that the lifetime of PAN varies between
2 and 4 months. PAN thus travels over long distances and
affects the NO,, partitioning in areas that are far away from
the precursor emission regions. Upon descent into warmer
regions of the troposphere, PAN releases NO, which in turn
increases ozone and OH production in remote regions (Singh
et al., 1986, 1998; Hudman et al., 2004). PAN mixing ratios
vary from less than 1 pptv in the remote marine atmosphere
(as observed during the NASA GTE PEM-Tropics B cam-
paign in the South Pacific lower marine boundary layer, data
available at http://acd.ucar.edu/~emmons/DATACOMP/) to
several parts per billion by volume in the polluted urban en-
vironment and biomass burning plumes (Ridley et al., 1992;
Singh et al., 1998). In the UTLS, mixing ratios are typically
in the range 10-300 pptv (Emmons et al., 2000; Keim et al.,
2008).

To our knowledge, our study is the first study that an-
alyzes the influence of monsoon outflow from different
world regions on the distribution of peroxyacetyl nitrate
(PAN) in the UTLS over the Asian monsoon region, and
its recirculation in the UTLS. We run decadal simulations
with the chemistry—climate model ECHAMS-HAMMOZ.
In emission sensitivity experiments, NO, and NMVOCs
emissions were simultaneously reduced by 10 % over ASM,
WAM and NAM to understand regional contribution. We ap-
ply statistical comparisons with satellite and aircraft data,
thereby contributing to the objectives of the Chemistry-
Climate Model Initiative (CCMLI, see http://www.igacproject.
org/CCMI). The model climatology is evaluated with data
from aircraft campaigns and the Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS) instrument on-
board the ENVIronmental SATellite (ENVISAT) (referred to
as MIPAS-E hereafter). The transport of HNO3 and NO, due
to monsoon convection from different monsoon regions and
the impacts of lightning on the UTLS distributions of nitro-
gen oxide are also analyzed and compared to the results ob-
tained for PAN. The paper is organized as follows: Sect. 2
contains a short description of the data and model includ-
ing the simulation setup. Comparisons of model simulations
with observations are given in Sect. 3. In Sect. 4, we discuss
the various convective transport pathways of PAN into the
UTLS, its redistribution in the stratosphere and its recircu-
lation across the various monsoon regions as well as results
of the emission sensitivity simulations depicting the contri-
butions from major monsoon systems. The analysis of per-
centage changes in lightning-produced ozone, HNO3, PAN
and NO, on total concentrations over the convective zones is
presented in Sect. 5. Conclusions are given in Sect. 6.
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2 Methods
2.1 Satellite measurements

MIPAS-E instrument was launched in March 2002 into a po-
lar orbit of 800 km altitude, with an orbital period of about
100 min and an orbit repeat cycle of 35 days. MIPAS-E (Fis-
cher and Oelhaf, 1996; Fischer et al., 2008) was a Fourier
transform spectrometer that provided continual limb emis-
sion measurements in the mid-infrared over the range 685—
2410cm~! (14.6-4.15 um). From January 2005 through the
end of the mission in April 2012, MIPAS-E was operated
with a spectral resolution of 0.0875cm™!, and a stepping of
the tangent altitude of 1.5-2km in the UTLS region. As a
mid-infrared sounder, MIPAS-E could not provide spectral
information from below the cloud top.

MIPAS-E monitored several atmospheric trace con-
stituents affecting atmospheric chemistry including PAN,
NO, and O3. The details of the general retrieval method
and setup, error estimates and use of averaging kernel
and visibility flag are documented by von Clarmann et
al. (2009). In this study we analyze the MIPAS-E observed
PAN data during the period 2005-2012, i.e., the data version
V5R_PAN_220/V5R_PAN_221 (different naming 220/221
merely due to technical reasons). The data are available
from http://share.1sdf kit.edu/imk/asf/sat/kiefer/To_Richard/.
Details of the MIPAS-E PAN retrievals, error budget and
vertical resolution are given by Glatthor et al. (2007) and
by Wiegele et al. (2012). Table 3 in Wiegele et al. (2012)
indicates that for the total error of single profiles of the
V5R_PAN_220/221 product, the spectral noise and the un-
certainty of the instrument pointing are the main contribu-
tors. However, since noise is a major contributor a reduc-
tion of the total error can be expected for vertical profiles of
binned data. For typical bins used in this work the total er-
rors are less than 10 % below 12 km, 30 % at 15 km, 50 % at
19 km and 80 % at 23 km.

The sensitivity of the PAN retrievals can be judged by the
averaging kernels. For the VSR_PAN_220/221 product an
example of the respective averaging kernel rows is shown
in Fig. S1 in the Supplement for an altitude range of 5 to
25km at 28° N and 85° E for cloud-free atmospheric condi-
tions. The diamonds indicate the respective nominal altitudes
of the retrieval grid. The figure shows that the retrieval results
below 8-9 km are dominated by information from above the
nominal altitude. A similar, albeit less obvious, situation de-
velops for altitudes above 22-23 km. There and above, the
information has an increasing weight from lower than nomi-
nal altitudes. This is the reason why the MIPAS-E PAN data
are not considered below 8 km and above 23 km. Another
effect clearly visible in the example is that the altitude re-
gion which influences the retrieved PAN value at a given al-
titude increases with altitude, i.e., the vertical resolution de-
creases with altitude. To account for the comparatively low,
and altitude-dependent, vertical resolution, the model data to
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be directly compared to MIPAS-E measurements were con-
volved with the MIPAS-E PAN averaging kernel.

The data are contoured and gridded at 4° latitude and 8°
longitude resolution. In the process the data quality specifica-
tions as documented at http://share.lsdf kit.edu/imk/asf/sat/
mipas-export/Documentation/ were employed, namely: only
data with a visibility flag equal to 1 and a diagonal value of
averaging kernel greater than 0.03 were used.

2.2 ECHAM5-HAMMOZ model simulation and
experimental setup

The ECHAMS5-HAMMOZ  aerosol-chemistry—climate
model used in the present study is comprised of the general
circulation model ECHAMS (Roeckner et al., 2003), the
tropospheric chemistry module, MOZ (Horowitz et al.,
2003), and the aerosol module, Hamburg Aerosol Model
(HAM) (Stier et al., 2005). It includes ozone, NO,, VOC
and aerosol chemistry. The gas-phase chemistry scheme is
based on the MOZART-2 model (Horowitz et al., 2003),
which includes comprehensive Oyx—NO;—hydrocarbons
chemistry with 63 tracers and 168 reactions. The O('D)
quenching reaction rates were updated according to Sander
et al. (2003) and isoprene nitrates chemistry according
to Fiore et al. (2005). In the model simulations we in-
cluded emissions of acetone from anthropogenic sources
and wild fires (primary sources), while acetaldehyde and
methylglyoxal are produced by oxidation of other NMVOCs
(secondary sources). In particular, oxidation of primary
NMVOC:s like ethane (CoHg), propane (C3Hg) and propene
(C3Hg) forms acetaldehyde, while CH3COCHO is mainly
formed from the oxidation products of isoprene and terpenes.
Higher acyl peroxy nitrates (MPAN) have been included in
the MOZART-2 chemical scheme, which are also formed
through oxidation of NMVOCs, but their production is small
compared to PAN. Thermal decomposition, and reaction
with OH as well as the absorption cross sections for PAN
photolysis are all specified according to Sander et al. (2003).

In ECHAMS-HAMMOZ dry deposition follows the
scheme of Ganzeveld and Lelieveld (1995). Soluble trace
gases such as HNO3 and SO; are also subject to wet de-
position. In-cloud and below-cloud scavenging follows the
scheme described by Stier et al. (2005). PAN is not water-
soluble, therefore dry and wet deposition are insignificant re-
moval processes.

The model is run at a spectral resolution of T42 corre-
sponding to about 2.8 x 2.8° in the horizontal dimension and
31 vertical hybrid o-p levels from the surface up to 10 hPa.
We note that the nominal grid resolution of 2.8° is somewhat
misleading, because the spectral truncation of T42 only al-
lows to resolve details on the order of 180/42 =4.28°. This
is the main reason why we compare our model results with
the MIPAS-E PAN retrievals on a 4 x 8° grid. The details
of model parameterizations, emissions and validation are de-
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scribed by Pozzoli et al. (2008a, b, 2011) and Fadnavis et
al. (2013).

The model simulations were performed with varying
monthly mean sea surface temperature (SST) and sea ice
cover (SIC) data over the period 2000-2010 (AMIP) re-
ferred to as the control simulation. The simulations did
not aim to exactly reproduce specific meteorological years,
and we ran 1l-year periods in order to obtain reason-
able statistics. We used the RETRO project data set of the
year 2000 available at http://eccad.sedoo.fr/ for the surface
CO, NO, and hydrocarbon emissions from anthropogenic
sources and biomass burning (Schultz et al., 2007, 2008).
Anthropogenic total RETRO emissions of the year 2000 are
476 Tgyear—! for CO, 90 Tgyear~! for NO,, 5 Tgyear™!
of ethane, 3.5Tgyear~! of propane and 2.7 Tgyear~! of
propene, which are the main anthropogenic VOC pre-
cursors of PAN. Biomass burning RETRO emissions of
year 2000 are 357 Tgyear—! for CO, 16Tgyear~! for
NO,, 2.5Tgyear™! for ethane, 1.3 Tgyear~! for propane,
2.7 Tgyear™! for propene and 2.7 Tg year~! for acetone. CO
biomass burning emissions in Southeast Asia account for
7 Gg month~! in spring, while up to 15 Gg month~! were re-
ported from Carmichael et al. (2003). The anthropogenic and
biomass burning emissions of SO, (total of 142 Tgyear™!),
BC (7.7Tgyear"!) and OC (66.1 Tgyear—!) are based on
the AEROCOM emission inventory (Dentener et al., 2006),
also representative of the year 2000. The biogenic NMVOC
emissions are calculated online with the MEGAN module of
Guenther et al. (2006). The simulated global annual mean
emission of biogenic NMVOCs between 1995 and 2004 is
830 Tg(C) year~!; isoprene contributes 57 %, followed by
terpenes (21 %), methanol (12 %) and other NMVOCs such
as acetaldehyde (2.5 %) and acetone (2.3 %). Other natural
emissions calculated online by the model are the dimethyl
sulfide (DMS) fluxes (Kettle and Andreae, 2000; Nightingale
et al., 2000; Pham et al., 1995), sea salt aerosols (Schulz et
al., 2004) from the ocean and mineral dust aerosols (Tegen et
al., 2002; Cheng et al., 2008).

Our base year for aerosol and trace gas emissions is 2000,
and emissions were repeated annually throughout the simu-
lation period. One point to note is that there were substantial
emission changes in Asia and Africa (increasing trends) and
Europe and North America (decreasing trends) during the
study period, which are not captured in our simulations. A
consequence of these emission changes for our study would
be that we may underestimate the impact of local pollution
sources on PAN concentrations in the UTLS over the ASM
region in recent years and that we overestimate the contribu-
tion from long-range transport of northern hemispheric pol-
lution. We provide an estimate of this error in the discussion
of the results. Lightning NO, emissions are parameterized
following Grewe et al. (2001). They are proportional to the
calculated flash frequency with a production rate of 9 kg(N)
per flash, and distributed vertically using a C-shaped profile.
The calculated flash frequency is resolution-dependent and
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scaled globally to yield annual global emissions of 3.4 Tg(N)
per year. To study the impact of lightning on the distributions
of PAN we compare two sets of experiments; each were con-
ducted for 11 years, 2000-2010: (1) the control experiment
(CTRL) and (2) the lightning-off experiment (light-off).

Model-simulated PAN, NO,, HNO3; and O3 mixing ra-
tios are evaluated with climatological data sets of airborne
campaigns during the monsoon season (June—September).
The data were retrieved from http://acd.ucar.edu/~emmons/
DATACOMP/CAMPAIGNS/ (see also the paper by Em-
mons, 2001). The NO, and ozone volume mixing ratios ob-
served during Cloud Aerosol Interaction and Precipitation
Enhancement Experiment (CAIPEEX) (details available in
Kulkarni et al., 2012), September 2010, are evaluated over
the Indian region. The details of instruments and measure-
ment techniques are available at http://www.tropmet.res.in/
~caipeex/about-data.php. The list of data sets and aircraft
campaign used for comparison are presented in Table 1. For
the comparison, aircraft observations are averaged over 0—
2, 2—-6 and 6-8 km and horizontally over the coherent flight
regions.

In order to understand the impact of NO, and NMVOCs
emissions on the distribution of PAN, we conducted
a reference run and three emission sensitivity simula-
tions for the year 2003 driven by European Centre for
Medium-Range Weather Forecasts operational analyses (In-
tegrated Forecast System (IFS) cycle-32r2) meteorolog-
ical fields (available every 6h) (Uppala et al., 2005).
Model simulations were performed for the year 2003 since
there was no significant oceanic/meteorological perturba-
tion event like, e.g., El Nifio—Southern Oscillation or the In-
dian Ocean Dipole (http://www.marine.csiro.au/~mcintosh/
Research_ ENSO_IOD_years.htm). In experiments 1 to 3,
emissions of both NO, and MNVOCs were simultane-
ously reduced by 10% over (1) Asia (10°S-50°N, 60-
130°E), (2) Africa (30°S-30°N, 15°W-45°E) and (3)
North America (15-45°N, 120-75° W), referred to sep-
arately as Asia—10%, Africa—10% and North Amer-
ica—10%.

2.3 Model production of PAN

PAN is a secondary pollutant that has a short lifetime in the
lower troposphere. This reduces the number of source points
that contribute to PAN concentrations at any location in the
UTLS, resulting in a clearer identification of source-receptor
pathways. Figure 1 shows the distribution of PAN production
at 14 and 16 km. A striking feature is the confinement of PAN
production to regions of deep convection. A maximum daily
production rate of PAN in the UTLS, in these convective
zones, is >24 pptday ! near 14km and > 12 pptday~! near
16 km. Production of PAN from background concentrations
of ethane (CaHg) and other NMVOCs outside of deep con-
vection regions is distinctly secondary. NMVOC:s are subject
to the same convective transport as NO, and PAN formation
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(a)  PAN Production rate (pptiday) at 14 km (b)  PAN Production rate (ppt/day) at 16 km
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Figure 1. PAN production rates at (a) 14 km and (b) 16 km. Key re-
gions of biomass burning and anthropogenic emissions of pollutants
are evident and correspond to maxima in PAN production. Weaker
dispersed background formation is evident as well.

occurs where both have the highest values. The lifetime of
NO; is short throughout the troposphere which implies that
PAN production in the UT can be associated with deep con-
vection. There is also a contribution to PAN production from
stratospheric air penetrating into the troposphere (Liang et
al., 2011). Tropopause folding is a significant source of ex-
change between the stratosphere and the troposphere (Gettel-
man et al., 2011). This is an extratropical process that likely
contributes to the PAN formation maxima over North Amer-
ica, Europe and Asia (shown in Fig. 1a) via enhanced con-
version of ethane. In the model it is not possible to obscure
the relationship between PAN formation and NO, pollution
source regions.

3 Comparison of model simulations with observations
3.1 Comparison with aircraft measurements

Figure 2 shows scatter plots between aircraft observations
and model simulations at the coherent locations. Both air-
craft observations and model simulations are averaged for the
monsoon season and altitude ranges. It indicates that model-
simulated PAN,O3 and NO, show good agreement with air-
craft measurements; correlation coefficient >0.7 and signifi-
cance (P value) varies between 0.00 and 0.3, indicating that
correlation is significant at 95 % confidence level; however,
simulated HNO3, between 2 and 6 km, and 6 and 10 km, does
not agree well with aircraft observations.

A point-to-point comparison of (latitude—longitude tran-
sects at various altitudes) simulated PAN, NO,, O3 and
HNOj3 (for the period 1995-2005) with aircraft observations
are presented by Fadnavis et al. (2014). These plots show
good agreement between model simulations and aircraft ob-
servations. Vertical variation of simulated ozone also shows
good agreement with ozonesonde measurements over India
(see Fig. S3 in the Supplement in Fadnavis 2014). It should
be noted that current model simulations (2000-2010) show
better agreement with aircraft observations than Fadnavis
et al. (2014). Figures showing the difference between these
simulations and the aircraft observations are provided in the
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Table 1. Global aircraft measurements used for model evaluation.

Experiment

Time frame

Species

Location

POLINAT-2 (Falcon),
Ziereis et al. (2000)

19 Sep-25 Oct 1997

03, NO,

Canary Islands: LAT = 25, 35° N, LONG = 160, 170° W,
East Atlantic: LAT = 35, 45° N, LONG = 150, 160° W,
Europe: LAT =45, 55° N, LONG =5, 15°E,

Ireland: LAT = 50, 60° N, LONG = 165, 175° W

PEM-Tropics A (DC8),
Talbot et al. (2000)

24 Aug-15 Oct 1996

03, NO,, HNOj3, PAN

Christmas Island: LAT = 0, 10° N, LONG = 20, 40° W,
Easter Island: LAT = —40° N, 20° S, LONG = 60, 80° W,
Fiji: LAT =0°, 10° S, LONG = 170°E, 10° W,

Hawaii: LAT = 10, 30° N, LONG = 10, 30° W,

Tahiti: LAT = 20° S, 0°, LONG = 20, 50° W

PEM-Tropics A (P3),
O’Sullivan et al. (1999)

15 Aug-26 Sep 1996

03, HNO;3

Christmas Island: LAT =0°, 10° N, LONG = 20, 40° W,
Easter Island: LAT = 40, 20° S, LONG = 60, 80° W,
Hawaii: LAT = 10, 30° N, LONG = 10, 30° W,

Tahiti: LAT = 20° S, 0°, LONG = 20, 50° W

ABLE-3B (Electra),
Harriss et al. (1994)

6 Jul-15 Aug 1990

03, NOy, HNO3, PAN

Labrador: LAT = 50, 55° N, LONG = 120, 135° W,
Ontario: LAT =45, 60° N, LONG = 90, 100° W,
US east coast: LAT = 35, 45° N, LONG = 100, 110° W

CITE-3 (Electra), 22 Aug-29 Sep 1989 O3, NOy Natal: LAT = 15° S, 5° N, LONG = 145, 155° W,
Hoell et al. (1993) Wallops: LAT = 30, 40° N, LONG = 100, 110° W
ELCHEM (Sabreliner), 27 Jul-22 Aug 1989 03, NOy New Mexico: LAT = 30, 35° N, LONG = 70, 75° W
Ridley et al. (1994)

ABLE-3A (Electra), 7 Jul-17 Aug 1988 03, NO,, PAN Alaska: LAT = 55, 75° N, LONG = 10, 25° W
Harriss et al. (1992)

ABLE-2A (Electra), 12 Jul-13 Aug 1985 O3 East Brazil: LAT = 10° S, 0°, LONG = 120, 135° W,
Harriss et al. (1988) West Brazil: LAT =5°S, 0°, LONG =110, 120° W
STRATOZ-3 (Caravelle 116),  4-26 Jun 1984 O3 Brazil: LAT =20° S, 0°, LONG = 135, 155° W,

Drummond et al. (1988)

Canary Islands: LAT = 20, 35° N, LONG = 160, 155° W,

E tropical North Atlantic: LAT = 0°, 20° N, LONG = 150,
165° W,

England: LAT = 45, 60° N, LONG = 10°E, 5° W,

Goose Bay: LAT =45, 60° N, LONG = 110, 125° W,
Greenland: LAT = 60, 70° N, LONG = 110, 150° W,
Iceland: LAT = 60, 70° N, LONG = 150, 155° W,

NW South America: LAT = —5, 10° N, LONG =95, 115° W,
Puerto Rico: LAT = 10, 25° N, LONG = 110, 120° W,

S South America: LAT = 65, 45° S, LONG = 95, 120° W,
SE South America: LAT =45, 20° S, LONG = 115, 140° W,
SW South America: LAT =—45, 25°S, LONG =105,
112°W,

Spain: LAT = 35, 45° N, LONG = 15° W, 0°,

W Africa: LAT =0°, 15° N, LONG = 15° W, 0°,

W South America: LAT = 25, 5°S, LONG =95, 110° W,
Western North Atlantic: LAT =25, 45°N, LONG= 110,
120° W

CITE-2 (Electra),
Hoell et al. (1990)

11 Aug-5 Sep 1986

03, NO,, HNO3, PAN

INTEX-A, Jul-Aug 2004 03, PAN, NO,,
Singh et al. (2006)
CAIPEEX, Sep-Oct 2010 03, NO,

Prabha et al. (2011)

California: LAT = 35, 45° N, LONG = 55, 70° W,

Pacific: LAT = 30, 45° N, LONG = 45, 55° W

Eastern North America: LAT =29, 51°N, LONG: 44—
120°W

LAT=12,22°N,LONG="74,78°E

Supplement as Fig. S2. The model bias varies with species
and altitude. In general, the bias in PAN ranges from —20 ppt
to 80 ppt, for ozone from —2 to 40 ppb and for HNOj3 from
—20 to 75 ppt, while NO, mixing ratios show a good agree-
ment with CAIPEEX measurements over the Indian region.

Atmos. Chem. Phys., 15, 11477-11499, 2015

Unfortunately, there were no measurements of PAN or HNOj3
made during CAIPEEX.

www.atmos-chem-phys.net/15/11477/2015/
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Figure 2. Scatter plot between model simulation (averaged for for 1995-2004) and aircraft observations of PAN (ppt), ozone (ppb), HNO3
(ppt) and NOy (ppt) (averaged for the monsoon season (June—September) ). The model simulations and aircraft observations are averaged
for altitude ranges over the coherent regions. The Pearson’s correlation coefficient (R) and corresponding p-value is given in each subplot.

3.2 Comparison with MIPAS-E retrievals

In order to study the influence of monsoon circulation on
the distribution of PAN in the UTLS region, multi-year aver-
ages (2005-2011) of seasonal mean (June—September) PAN
retrievals from MIPAS-E are analyzed. Figure 3a presents
these data for the altitude range 14—16 km, and Fig. 3b shows
the corresponding ECHAMS-HAMMOZ results for compar-
ison. MIPAS-E observations show maximum PAN mixing
ratios (~200-230ppt) over (1) the Asian monsoon anticy-
clone region (12—40°N, 20-120°E), and (2) over parts of
North America, the Gulf Stream, (3) southern Atlantic Ocean
and the west coast of tropical Africa. ECHAMS5-HAMMOZ
CTRL simulations also show high PAN concentration at
these locations; however, PAN concentrations are lower than
MIPAS-E observations and appear somewhat more localized.
MIPAS-E exhibits a PAN maximum originating from African
sources over the South Atlantic, whereas the model shows
this maximum over the African continent. This may be the
outflow of biomass burning over central and southern Africa

www.atmos-chem-phys.net/15/11477/2015/

during summer monsoon, which might be underestimated
in the model. The biomass burning region of Africa during
the ASM season is ~ 30° S—20° N; 20° W-30° E (Galanter et
al., 2000). The longitude—altitude and latitude—altitude cross
sections of MIPAS-E observed and simulated PAN over the
biomass burning region are plotted in Fig. S3. The model
simulation shows that the biomass plume rising from Africa
moves westward and northward over the Atlantic Ocean and
merges with South American plume. From satellites, aircraft
observations and model simulations, Real et al. (2010) and
Barret et al. (2008) reported a plume in the middle and upper
troposphere (UT) over the southern Atlantic which originates
from central African biomass burning fires.

The difference between ECHAMS-HAMMOZ simulation
and MIPAS-E observations are shown in Fig. S3c and f.
These figures show that the model underestimates biomass
burning PAN by 20-60 ppt. These differences may also be
related to issues in the vertical transport of PAN, or to a pos-
sible underestimation of the emission sources of NMVOC:s.
Uncertainties in the rate coefficients and absorption cross

Atmos. Chem. Phys., 15, 11477-11499, 2015
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(a) MIPAS PAN at 14-16 km
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Figure 3. Distribution of seasonal mean PAN concentration (ppt)
averaged for 14-16 km (a) observed by MIPAS-E (climatology for
the period 2002-2011) (b) ECHAMS-HAMMOZ CTRL simula-
tions. Wind vectors at 16 km are indicated by black arrows in (b).

sections of PAN may also play a role. Furthermore, anthro-
pogenic NO, emissions are mostly underestimated in the
emission inventories (Miyazaki et al., 2012). As discussed
in Fadnavis et al. (2014), UTLS PAN over the ASM is sen-
sitive to NO, emission changes in India or China. In their
study, also performed with ECHAMS-HAMMOZ, a 73 %
NO, emission change in India lead to a PAN increase of 10—
18 %, while a 73 % NO, emission change in China changed
PAN over the ASM by 18-30 %. The cross-section plots
of (see Fig. S4) differences in MIPAS-E PAN with model-
simulated PAN indicate that in the UTLS, MIPAS-E PAN is
higher than model-simulated PAN by ~ 20-60 ppt (except at
20 km). PAN is lower by 20-40 ppt over the eastern part of
ASM anticyclone (southern India and Southeast Asia) and
also over Indonesia and northern Australia. In general, in the
ASM region, during the monsoon season, MIPAS-E PAN is
higher than the model by 30-60 ppt between 8 and 16 km
and the difference between MIPAS-E and model PAN varies
between +40 ppt and —40 ppt between 17 and 20 km.

4 Transport of PAN during monsoon season
4.1 Transport from the northern tropical land mass

Figure 3a shows high concentrations of MIPAS-E PAN at
14-16km over Asia, North America and tropical Africa.
ECHAMS5-HAMMOZ simulations (Fig. 3b) also show simi-
lar distribution. This may be due to transport from the bound-
ary layer into the UTLS by the monsoon convection from
respective regions. ECHAMS-HAMMOZ-simulated outgo-
ing long-wave radiation (OLR) and 850 hpa winds averaged
for the monsoon season are shown in Fig. S5a. They indi-
cate the extent of deep convection near the surface. NCEP
reanalysis OLR and 850hPa winds averaged for the mon-
soon season (2000-2010) are plotted in Fig. S5b for com-
parison. These figures indicate that the model can repro-
duce deep convection as well as the large-scale circulation.
The cross section of distribution of simulated cloud droplet

Atmos. Chem. Phys., 15, 11477-11499, 2015
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number concentration (CDNC) and ice crystal number con-
centration (ICNC) over Asia, North America and tropical
Africa confirms strong convective transport from these re-
gions (Fig. S5c—e). It should be noted that vertical velocities
in a large-scale model also indicate rapid uplift in deep con-
vective regions. From satellite observations and model sim-
ulations Park et al. (2009) reported transport of fraction of
boundary-layer carbon monoxide (CO) into the UTLS by the
Asian monsoon convection.

To illustrate vertical transport, longitude—altitude cross
sections of PAN mixing ratios averaged over the region
0-30° N for June—September as obtained from MIPAS-E
and ECHAMS-HAMMOZ are shown in Fig. 4a and b,
respectively. Both MIPAS-E observations and ECHAMS—-
HAMMOZ simulations show elevated levels of PAN (200—
250 ppt) near 80-100° E (ASM), 30° W-30° E (WAM) and
80-100° W (NAM) region. The simulated PAN distribution
along with winds plotted in Fig. 4b show cross-tropopause
transport from these regions. It reveals that transport of
boundary-layer PAN to the UTLS mainly occurs from strong
convective regions, i.e., Bay of Bengal (~ 80-90° E), South
China Sea (~ 100-120° E), western Atlantic Ocean (Gulf
Stream region) and Gulf of Mexico (80-100° W). MIPAS-
E observations and model simulations show that the trans-
port due to ASM is strongest and reaches deepest into the
lower stratosphere. This is due to the more intense deep con-
vection activity over the ASM region compared to the NAM
region (see Fig. S5c—e). Figure 4c presents the differences
between MIPAS-E and model-simulated PAN. It appears that
the model PAN is overestimated over the ASM (20-30 ppt)
and underestimated over the NAM (50-70 ppt) and WAM
(20-50 ppt) regions between 8 and 18 km. However, the over-
estimation in the UT in the ASM is difficult to explain on
physical grounds and is more likely to be a MIPAS-E sam-
pling issue as discussed later.

4.2 Transport from the southern tropical land mass

In order to understand transport of PAN due to southern
WAM, SAM and AUSM, we show longitude—pressure sec-
tions of MIPAS-E observations and model-simulated PAN
concentrations averaged over 0-25° S in Fig. 4d, e, respec-
tively. The model has plumes near 20, 100° E and 80° W.
These three regions of convective transport are (1) tropi-
cal southern Africa 10—40° E, referred to as southern Africa,
(2) Indonesia and northern parts of Australia ~100-110°E
and (3) South America ~ 70-80° W. Outflow from Indonesia
and from northern parts of Australia (~ 100° E) penetrates
deep into the UTLS. Tropical Rainfall Measuring Mission
(TRMM) satellite observations show high frequency of in-
tense overshooting convection over these areas (during the
monsoon season) with highest density in the belt 0-10° S
over the Caribbean, Amazon, Congo and southern maritime
continent (Liu and Zipser, 2005). The analyses of vertical
winds show strong transport from 10-40°E, 100-110°E,

www.atmos-chem-phys.net/15/11477/2015/
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Figure 4. Longitude—altitude cross section of PAN (ppt) averaged for the monsoon season and 0-30° N; (a) MIPAS-E climatology (b)
ECHAMS5-HAMMOZ CTRL simulations. (¢) Difference in PAN (ppt) (MIPAS-E-ECHAMS-HAMMOZ). PAN (ppt) averaged for the
monsoon season and 0-25° S (d) MIPAS-E climatology (e) ECHAM5-HAMMOZ CTRL simulations (f) difference in PAN (ppt) (MIPAS-
E-ECHAMS5-HAMMOZ). ECHAMS5-HAMMOZ simulations are smoothed with averaging kernel of MIPAS-E. Wind vectors are indicated
by black arrows in (b) and (e). The vertical velocity field has been scaled by 300. The black line in (b) and (e) indicates the tropopause.

70-80° W (in the belt 0-10°S) (figure not shown). The
amount of high-level cloud fraction is also high over these
regions. Distribution of CDNC and ICNC show deep convec-
tion over these regions (figure not shown). The model sim-
ulations show high PAN concentrations reaching the UTLS.
Thus transport due to deep convection is reasonably well cap-
tured by the model. However, the MIPAS-E retrievals only
show a plume rising over southern Africa and no enhance-
ment over the AUSM (Indonesia—Australia) and SAM re-
gions. Figure 4e shows that the plumes from the three out-
flow regions are mixed in the UT (8—14 km) by the prevail-
ing westerly winds. The reasons for a single plume seen in
MIPAS-E may be that lower concentrations of PAN reach
these altitudes (above 8 km) from SAM and AUSM and mix
with the plume over southern Africa. There are indications
of elevated PAN concentrations at the lower boundary in
Fig. 4d. Simulations show lower PAN mixing ratios over the
longitudes of SAM and AUSM (see Fig. 4e). The differences
between MIPAS-E observations and simulations (Fig. 4f)
show that model PAN is overestimated in the AUSM (10—
30 ppt) and is underestimated over the southern WAM (20—
70 ppt) and SAM (20-50 ppt) between 10 and 18km. It is
likely that the three-plume structure in the UT seen in the
model is being obscured in the observations due to sampling

www.atmos-chem-phys.net/15/11477/2015/

issues since periods of deep convection that reach signifi-
cantly above 8 km are associated with significant cloud cover.

Figure 4 shows that simulated transport of PAN due to
ASM, NAM and WAM convection is stronger and penetrates
deeper into the UT compared to SAM and AUSM. This is
consistent with the distribution of deep convection noted by
Gettelman et al. (2002). In general, the PAN amounts in the
UTLS in the model are less than those observed by MIPAS-
E. This may be due to an underestimation of the chemical
PAN source from VOC precursors or too little vertical trans-
port in the model or a combination of both. Earlier model
studies with ECHAM also exhibited concentrations of CO in
the upper tropospheric outflow that were too low (M. Schultz,
unpublished data from the NASA Global Tropospheric Ex-
periment TRACE-P mission).

4.3 Transport from the Asian summer monsoon region

The ASM anticyclone extends from 60 to 120°E and 10
to 40° N (see Fig. 3b). Latitude-altitude cross sections over
the ASM anticyclone (60-120°E) of MIPAS-E observed
PAN (plotted in the altitude range 820 km) and ECHAMS—
HAMMOZ CTRL simulations are shown in Fig. 5a and b, re-
spectively. ECHAMS-HAMMOZ simulations are similar to

Atmos. Chem. Phys., 15, 11477-11499, 2015
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Figure 5. Latitude—altitude cross section of PAN (ppt) (a) MIPAS-E climatology, averaged for the monsoon season and for 60-120° E,
(b) PAN from ECHAMS-HAMMOZ CTRL simulations, averaged for the monsoon season and 60-120° E, (c) difference in PAN (ppt)
(MIPAS-ECHAMS-HAMMOZ), (d) longitude—altitude section averaged over 10-30° N obtained from reference—Asia —10 % simulations
(e) same as (d) but latitude—altitude section averaged over 60—120° E, (f)—(i) latitude—longitude sections of reference—Asia —10 % simulations
at 14, 16, 18 and 21 km, respectively. Wind vectors are indicated by black arrows. The vertical velocity field has been scaled by 300.

MIPAS-E retrievals of PAN. There is indication of plume as-
cent into the lower stratosphere. The ECHAMS5-HAMMOZ
simulations also show transport of subtropical boundary-
layer PAN into the UTLS due to deep convection. This is
not visible in the MIPAS-E data because of the lack of data
below 8 km. Figure 5b shows that there is transport from 40—
50° N reaching up to 10km (~200hPa). Park et al. (2004,
2007, 2009) and Randel and Park (2006) noted that trace
species are introduced into the monsoon anticyclone at its
eastern end around 200 hPa. The uplift over Southeast Asia

Atmos. Chem. Phys., 15, 11477-11499, 2015

and the base of the Himalayas in India pumps tracers into the
upper tropical troposphere where they get horizontally redis-
tributed by the anticyclonic circulation and form the region
of high PAN values between 40° N and high latitudes. Fig-
ure 10c shows that the mid-latitude maximum seen in Fig. 5c
is due to pollution transport from Europe. The Chinese emis-
sions are feeding into this large plume over Russia and are
transported partly and diluted over the extratropical Pacific
Ocean. The latitude—altitude section of differences between
MIPAS-E and simulated PAN indicates that ASM plume is

www.atmos-chem-phys.net/15/11477/2015/
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underestimated in the model (see Fig. 5c). It is interesting
to compare Fig. 4c (longitude—altitude section) and Fig. 5c
(latitude—altitude section). The reason for underestimation of
the ASM plume in the latitude—altitude section may be due
to a lower contribution from the eastern part of anticyclone
in the model. Figure S4 shows model PAN is underestimated
over southern India and Southeast Asia in the UT, and over-
estimated in the lower stratosphere.

In order to understand the impact of transport from ASM
region on the rest of the world, we analyze differences
between reference and Asia —10 % simulations (reference—
Asia —10%). The latitude—altitude and longitude—altitude
cross sections over the ASM region (Fig. 5d and e) show
transport of ~ 5-20 ppt of PAN into the lower stratosphere.
The horizontal cross sections at 14 to 21 km (Fig. 5f—i) show
that Asian PAN is transported to northern Atlantic by sub-
tropical westerly winds. These figures show that a 10 %
change in Asian emissions (NO, and NMVOCs) transports
~ 5-30ppt into the UTLS over Asia and 1-7 ppt of PAN in
the UTLS of northern subtropics and mid-latitudes.

4.4 Transport from the North American monsoon
region

Figure 6a and b exhibit latitude—altitude sections of PAN
from MIPAS-E retrievals and ECHAMS5-HAMMOZ simu-
lations (seasonal mean for July—September) over the North
American monsoon region between 70 and 120° W. MIPAS-
E observations and the model indicate transport of PAN
into the UTLS. The distribution of ECHAMS-HAMMOZ-
simulated PAN from the boundary layer to UTLS shows the
source region is at around 40° N. There is convective uplift
of PAN over the northern Gulf of Mexico region and over
the Gulf Stream. High amount of pollutants emitted from
northeast America from a number of power plants are lo-
cated in Atlanta, Washington, Chicago, Boston and Jack-
sonville (CEC report, 2011). The tropospheric NO; columns
retrieved from the SCIAMACHY and OMI satellite instru-
ments show high amounts of anthropogenic NO, emissions
over this region (Lamsal et al., 2011; Miyazaki et al., 2012).
The model simulations show a high amount of PAN con-
centrations over this region (see Fig. 10a—d). The monsoon
convection lifts these pollutants to the UT. The outflow of
these pollutants is over the Atlantic (see Fig. 3a). TRMM
precipitation radar observations show significant overshoot-
ing convective activity over this region during the monsoon
season (Liu and Zipser, 2005). The vertical distribution of
differences in MIPAS-E and simulated PAN shows that PAN
is underestimated in the model (see Fig. 6¢) over North and
South America (10-60 ppt) between 10 and 18 km, however
PAN is overestimated in the model between 8 and 10 km in
the region near 30° N. As discussed above this may be asso-
ciated with European emissions and transport.

Figure 6d—e show impact of North American emission
(reference—North America —10 %) on the transport of PAN.
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The figure shows cross-tropopause transport of PAN by
North American monsoon convection. The amount of PAN
transported (~ 1-5ppt) into the lower stratosphere is less
than for the ASM (~ 10-20 ppt). The latitude—longitude dis-
tribution of PAN (Fig. 6f—i) shows that the upper tropo-
spheric westerly winds transport ~ 1-10 ppt of PAN to the
Atlantic, Europe and North China.

4.5 Transport from the West African region

Figure 7a—b show vertical distributions of PAN over the
African region (averaged over 0—45° E). MIPAS-E observa-
tions and model simulations indicate a plume that crosses
the tropopause and enters the lower stratosphere. The model
surface fields (see Fig. 7b) show that this plume arises from
latitudes 5-20° S over Africa and that it moves equatorward.
It subsequently merges with the ASM plume. A prominent
tongue of high PAN values between 30 and 60° N is captured
in model simulations. This feature appears to be related to
emissions from Europe being transported towards the equator
in the upper subtropical troposphere. However, in the model,
emissions from Europe are transported poleward instead of
equatorward (Fig. 7b). There is a region of strong descent
in the model between 30 and 40° N (see Fig. 7b) which de-
forms the PAN isopleths around 12km around 30° N. This
feature is not seen in the MIPAS-E retrievals and indicates a
disagreement of the model with the transport pattern of the
atmosphere in this region. The transport of PAN in the 10—
20° S latitude band over the Congo, Angola and Tanzania re-
gions of southern and tropical Africa is not pronounced in
the model compared to MIPAS-E observations. This behav-
ior indicates that deep tropical convection is underestimated
in the model in this latitude band. The vertical distribution of
differences in MIPAS-E and simulated PAN (Fig. 7c) shows
that simulated PAN is underestimated over these regions (5—
20° S and 20-40° N) between 10 and 18 km. The reason may
be related to underestimation of deep tropical convection in
the model in this latitude band. Simulated PAN is overesti-
mated between 8 and 12 km near the equator.

The reference—Africa —10 % simulation (Fig. 7d—e) shows
that African PAN is transported up to the tropopause. The
cross sections over North and southern Africa show pen-
etration of the North African plume into the lower strato-
sphere (~ 19km). However, PAN transport into the lower
stratosphere (~ 0.2-0.6 ppt) is comparatively less than Asia
or North America. Figure 7g—j show transport of ~ 5-50 ppt
of PAN in the UT (6-12km) of tropical Africa. There is
transport from equatorial Africa to the Atlantic and Mexico
between 6 and 8 km (Fig. 7g—h) which is then transported to
North China by upper tropospheric (12 km) westerly winds
(see Fig. 7j).

The model-simulated latitude—altitude and longitude—
altitude cross sections of NO, and HNO3 over the ASM (10—
40° N, 60-120° E), NAM (10-40° N, 70-120° W) and WAM
(0-25°8S, 0-45° E) are shown in Fig. 8a—j, respectively. Fig-
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PAN from ECHAMS5-HAMMOZ CTRL simulations, averaged for the monsoon season and 70-120° W, (c) difference in PAN (ppt) (MIPAS-
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simulations at 10, 12, 14, and 16 km, respectively. Wind vectors are indicated by black arrows. The vertical velocity field has been scaled by

300.

ure 8a—e show transport features of NO,. These are similar
to those seen in the distribution of PAN, but with sharper
signatures due to the shorter lifetime of NO,. This shows
that monsoon convection lifts boundary-layer pollutants in-
cluding NOy species to the UTLS. The distribution of HNO3
(see Fig. 8f—j) shows a complex pattern. Comparing Fig.4b,
the region around 100° E with intense convective uplift corre-
sponds to HNOs3 depletion from the surface to above 10 km.

Atmos. Chem. Phys., 15, 11477-11499, 2015

In fact, the upper tropospheric region of the ASM anticy-
clone exhibits much lower values of HNO3 compared to all
the other longitudes in the 10—40° N band (Fig. 8h). This sug-
gests that in the model, the convective transport in the ASM
region is associated with efficient removal by wet scaveng-
ing. In contrast, the North American monsoon region has
HNOj3 ascending to the UT with significantly less loss. This
is likely due to the fact that convection involved in vertical
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Figure 7. Latitude—altitude cross section of PAN (ppt) (a) MIPAS-E climatology, averaged for the monsoon season and for 0-45° E, (b)
PAN from ECHAMS-HAMMOZ CTRL simulations, averaged for the monsoon season and 0-45° E, (c) difference in PAN (ppt) (MIPAS-
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transport during the NAM is not as intense and not as deep as
in the case of the ASM and there are differences in wet scav-
enging. Figure 8g shows that the plume rising from South
America moves towards the equator but does not have the ex-
tension into the UT as the North American plume. These are
June—September averages, and the intertropical convergence
zone is on the Northern Hemisphere side during this period.
Thus, weaker convective transport is to be expected on the
Southern Hemisphere side of the equator during this period.

www.atmos-chem-phys.net/15/11477/2015/

Figure 8i shows significant transport of African emissions
around ~0-15°S and a plume rising from Europe (~ 35—
60° N) as well.

Figure 9a—f show vertical distribution of HNO3 and O3
over Asia, North America and Africa as obtained from
differences between the reference and Asia —10 %, refer-
ence and North America—10% as well as reference and
Africa —10 % simulation. It is evident that transport of HNO3
for Asia —10 % simulation is deeper in the UT (~ 16 km)

Atmos. Chem. Phys., 15, 11477-11499, 2015
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than North America —10% and Africa—10 % simulations.
It can be seen that Asia —10 %, North America—10 % and
Africa —10 % simulations transport ~ 7-10ppt, ~ 5-7 ppt
and ~ 3-5 ppt of HNOj3 in the UT of their respective regions.

In the UT, between 6 and 10km, Asia —10 % simulation
shows transport of ~ 10-15ppt of HNO3 over the western
Pacific and ~3-10ppt over tropical America by the sub-
tropical westerly winds (figure not included). North Amer-
ica —10 % simulation shows transport of ~ 5—7 ppt of HNO3
over the Atlantic, North Africa, Saudi Arabia and North
China by the subtropical westerly winds and ~ 3-5 ppt of
HNOj3 over the equatorial Pacific, Indonesia, China and In-
dia by the tropical easterly winds. Africa —10 % simulation
shows transport of ~3-5ppt HNO3; from North Africa to
North America and the equatorial Pacific; there is also trans-
port of ~ 4 ppt of HNOj3 from southern Africa to the Atlantic,
South America, Indonesia, China and India by the tropical
easterly winds (figure not included).

North America —10 % simulation shows transport of
boundary-layer ozone extending up to the tropopause, which
is higher than for the Asia —10% and Africa—10 % simu-
lations (Fig. 9d—f). Asia —10 %, North America—10 % and
Africa —10 % simulations show transport ~ 1-2, ~0.8-1.5
and ~ 0.4-0.6 ppb of ozone in the UT of their respective re-
gions.

In the UT, between 6 and 10km, Asia —10 % simulation
shows transport of ozone ~ 1.5 ppb to the western Pacific
and 0.8 ppb to Mexico and United States by the subtropical
westerly winds (figure not included). North America —10 %
simulation shows transport of 0.4—1.5 ppb of O3 to the equa-
torial Pacific extending up to Indonesia by the tropical east-
erly winds. There is some outflow (~ 0.6 ppb) over the At-
lantic by the subtropical westerly winds as well (figure not in-
cluded). Africa —10 % simulation shows transport of ~ 0.4—
0.8 ppb of ozone to equatorial Atlantic and Mexico (figure
not included).

It can be seen that similar emission change over Asia,
North America and Africa causes highest change in HNO3
and ozone in the UT over Asia and least over Africa. In the
UT, between 6 and 10 km, transport of HNO3 by Asia —10 %
(~3-10ppt of HNO3 to tropical America) is higher than
North America —10 % (~ 3-7 ppt of HNO3 to China and In-
dia) and Africa —10 % (~ 3-5 ppt of HNOj3 to tropical Amer-
ica, China and India). Similarly ozone transport is higher for
Asia—10 % than North America—10% and Africa —10 %
simulations.

4.6 Horizontal transport

PAN concentrations from MIPAS-E and ECHAMS-
HAMMOZ at different altitudes are analyzed to investigate
horizontal transport. Figure 10a shows the distribution
of PAN from ECHAMS5-HAMMOZ simulations near the
surface (2km). Sources of PAN are apparent over South
America, southern Africa, North America, Europe, Russia

www.atmos-chem-phys.net/15/11477/2015/
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and northern China/Mongolia. The PAN distribution at
4km (see Fig. 10b) shows high concentrations above these
regions indicating vertical transport. Figure 10c and d show
the distribution at 6 and 8 km. The upper level anticyclonic
circulation between 10°N and 30°S over the Atlantic
transports PAN from central Africa towards America
and from Brazil towards southern Africa. The large-scale
Biosphere—Atmosphere Regional Experiment in Amazonia
(LBA-CLAIRE-98) campaign observations (Andreae et al.,
2001) and African Monsoon Multidisciplinary Analysis
(AMMA) project (Real et al., 2010) show that the biomass
burning plume originating from Brazil is lifted to altitudes
around 10km. This plume is entrained into deep convection
over the northern Amazon, transported out over the Atlantic
and then returned to South America by the circulation
around a large upper-level anticyclone. This transport is well
captured by the model.

North American pollution also gets transported by the
westerly winds over Eurasia, forming an organized belt.
This transport pattern persists up to 12km (Fig. 10e and g).
MIPAS-E observations at 12 km also show this transport pat-
tern. The source region for the PAN from southern Africa
is the region of active biomass burning. Since this region is
located in the tropics, the outflow is over the Atlantic due to
the prevailing easterly winds. ECHAMS-HAMMOZ simula-
tions show similar transport (see Fig. 10e). But there are dif-
ferences; in particular the transport over tropical Africa does
not get displaced over the Atlantic Ocean. As noted above,
there are significant transport differences between the model
and observations in this longitude band. Another difference
is that PAN is not transported westward over Central Amer-
ica and towards the Pacific Ocean.

Figure 10f-h show the distribution of PAN from
ECHAMS5-HAMMOZ simulations and MIPAS-E retrievals,
in the lower stratosphere (18 km). In both data sets PAN is
transported westwards from ASM, NAM and WAM by pre-
vailing easterly winds and maximizes in the region of the
ASM anticyclone.

As can be seen from the above discussions, the ASM,
NAM and WAM outflow and convection over the Gulf
Stream play an important role in the transport of boundary-
layer pollution into the UTLS. Previous studies (e.g., Fad-
navis et al., 2013) indicated that over the Asian monsoon re-
gion, transport into the lower stratosphere occurs and there
is significant vertical transport over the southern slopes of
the Himalayas (Fu et al., 2006; Fadnavis et al., 2013) and
also over the region spanned by the Bay of Bengal and the
South China Sea (Park et al., 2009). Pollutant transport due
to North American convection and tropical African outflow
does not penetrate as deep into the stratosphere as the ASM;
however, there is a clear indication that in the UT, middle-
latitude westerly winds connect the North American pollu-
tion to the ASM.

Figures 3-7 and Fig. 10 show that in the UT, westerly
winds drive North American and European pollutants east-

Atmos. Chem. Phys., 15, 11477-11499, 2015
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Figure 10. Latitude—longitude cross section of PAN (ppt) averaged for the monsoon season (a) ECHAMS-HAMMOZ simulations at 2 km
(b) 4km (c¢) 6km (d) 8 km (e) 12 km and (f) 8 km. MIPAS-E climatology at (g) 12 km and (h) 18 km.

ward to at least partly merge with the ASM plume. Strong
ASM convection transports these remote and regional pol-
lutants into the stratosphere. The Caribbean is a secondary
source of pollutant transport into the stratosphere. In the
stratosphere the injected pollutants are transported westward
by easterly winds and into the southern subtropics by the
Brewer—Dobson circulation.

5 Impact of lightning on tropospheric PAN, NO,,
HNOj3 and ozone

In the ASM region and during the monsoon season, the NO,
released from intense lightning activity enhances the for-

Atmos. Chem. Phys., 15, 11477-11499, 2015

mation of PAN, HNO3; and ozone in the middle and up-
per troposphere which is already relatively strong due to
the intense solar radiation along with high background con-
centrations of NO,, HO, and NMVOCs (Tie et al., 2001).
PAN, HNO3 and O3 produced from lightning may get trans-
ported in the lower stratosphere by deep monsoon convec-
tion and contribute to anthropogenic emission transport of
these species. In order to understand contribution of light-
ning and the dominating lightning production regions, we
analyze the difference between control and light-off simula-
tions. Figure 11a—d show the percentage changes in model-
simulated ozone, HNO3, PAN and NO, due to lightning
as zonally averaged spatial distribution of seasonal mean
(June—September) mixing ratios. The analysis indicates that

www.atmos-chem-phys.net/15/11477/2015/
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Figure 11. Zonal averaged seasonal mean changes (percentage) produced from lightning in (a) ozone (b) HNOj3 (¢) PAN and (d) NOy;
distribution of seasonal mean changes (percentage) produced from lightning in (e) ozone (f) HNO3 (g) PAN and (h) NO, at 12km.

the impact of lightning on these species is largest in the
tropical UT between 40° N and 40°S and between 8 and
14 km. In the tropical mid-troposphere, lightning-produced
maximum ozone is ~ 15-25 % (12-24 ppb), HNO3 ~ 40—
60 % (50-90 ppt) ~ PAN ~ 15-25 % (70-140 ppt) and NO,
~ 2040 % (10-35 ppt), while in the UT ozone is ~ 20-30 %
(20-28 ppb), HNO3 ~60-75% (80-110ppt), PAN ~ 28—
35% (120-170ppt), and NO, ~ 50-75 % (20-65 ppt). Our
results are consistent with model simulations by Tie et
al. (2001) and Labrador et al. (2005). The spatial distribu-
tions of NO,, ozone, PAN and HNO3 produced from light-
ning (see Fig. 1le-h) indicate that in the UT (12km) in-
creases in O3 ~20-25% (11-17 ppbv), HNO3 ~ 40-70 %,
PAN ~ 25-35 % and NO,. ~ 55-75 %, over North America

www.atmos-chem-phys.net/15/11477/2015/

are in agreement with previous studies (e.g Labrador et al.,
2005; Hudman et al. 2007; Zhao et al., 2009; Cooper et al.,
2009); over equatorial Africa (PAN 30-45 %, HNO3; ~ 70—
80 %, O3 ~25%, NO,~ 70 %) they agree well with Barret
et al. (2010) and Bouarar et al. (2011) and over the ASM
region (PAN ~ 25 %, HNO3z ~ 65-70 %, Oz ~20%, NO,
~ 60-70 %) they agree with Tie et al. (2001). These regions
coincide with regions of convective vertical transport of PAN
(as seen in Figs. 4 and 5). Lightning-produced PAN will be
lifted into the lower stratosphere by the monsoon convec-
tion along with anthropogenic emissions and will redistribute
in the tropical lower stratosphere. Latitude—longitude cross
sections of lightning-induced PAN, NO,, ozone and HNO3
formation at altitudes between 8 and 14 km show that the

Atmos. Chem. Phys., 15, 11477-11499, 2015
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production of PAN, NO,, ozone and HNOj3 is less over the
ASM region than over the equatorial Americas and Africa
(also seen in Fig. 11). The high amounts of PAN over the
ASM are therefore primarily due to anthropogenic emission
transport into the UTLS from the source regions in south-
ern and eastern Asia. As discussed in Fadnavis et al., 2014,
NO, emissions are estimated to have changed by 38 % in In-
dia and 76 % in China, respectively, during the 2002-2011
period. From sensitivity simulations they deduced that cor-
responding changes in upper tropospheric PAN are >40 %,
O3 by >25 % and HNO3 by >70 % over the Asian monsoon
region. These effects are larger than the impact of lightning
NO, emissions over this region (Fig. 11e-h).

6 Conclusions

In this study statistical analysis of simulated and satellite-
retrieved mixing ratios of PAN, NO,, and HNO3 is presented
in order to determine the transport patterns of pollution into
the Asian monsoon region and the impact of pollution flow-
ing out of the ASM into other regions of the global atmo-
sphere. The analysis focused on the upper troposphere and
lower stratosphere and covered the period 2002-2011. In
ECHAMS5-HAMMOZ simulations both NO,, and NMVOCs
emission were simultaneously reduced by 10 % over ASM,
NAM and WAM to understand transport pathways and their
relative contribution the UTLS. As discussed in Fadnavis et
al. (2014), NO, emissions are estimated to have changed by
38 % in India and 76 % in China, respectively, during this pe-
riod. From sensitivity simulations they deduced correspond-
ing changes in upper tropospheric PAN >40 %, O3 by >2 5%
and HNOj3 by > 70 % over the ASM region. These effects are
larger than the impact of lightning NO, emissions over this
region, discussed in Sect. 3 of this study.

Interestingly, the ECHAMS-HAMMOZ reference simula-
tion reveals that in the UT, westerly winds drive North Amer-
ican and northward-propagating southern African pollutants
eastward where they mix with the ASM plume. Deep convec-
tion and strong diabatic upwelling in the ASM convectively
transports a part of these plumes into the lower stratosphere.
The Caribbean region is another source of pollution trans-
port into the stratosphere. Some cross-tropopause transport
occurs due to convection over North America and southern
Africa as well. In the lower stratosphere, the injected pol-
lutants from ASM, WAM and NAM are transported west-
ward by easterly winds and into the Southern Hemisphere
subtropics by the Brewer—Dobson circulation. The emission
sensitivity simulations Asia —10 %, North America —10 %
and Africa —10 % confirm these transport pathways. In the
Southern Hemisphere, plumes rising from convective zones
of southern Africa, South America and Indonesia—Australia
are evident in the model simulations, but are not seen in the
MIPAS-E retrievals. PAN concentrations are higher in the
plume rising from southern Africa than SAM and AUSM. In
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the UT, they merge by the prevailing westerly winds. MIPAS-
E observations in the UTLS show a single plume over south-
ern Africa and no enhancement over SAM or AUSM. The
reasons for the single plume seen in MIPAS-E may be that
although there is uplifting by each of the three monsoon
systems lower concentrations of PAN reach these altitudes
(above 8 km) from SAM and AUSM until they merge with
the southern African plume. It is also possible that the three-
plume structure in the UT seen in the model is being ob-
scured in the observations due to sampling issues. Convec-
tive cloud cover is strongly associated with deep convection
in the ASM region. The MIPAS-E data have a PAN minimum
in the UT right in the longitude band of the deep convec-
tion over the southern flanks of the Himalayas (Fig. 4a). This
feature is unphysical and clearly identifies a sampling bias;
however, the model does not also fully reproduce the latitu-
dinal structure of the PAN in the ASM region UTLS, which
indicates that there are differences in both the distribution of
convection and the large-scale circulation.

The horizontal transport of PAN analyzed from
ECHAMS5-HAMMOZ simulations show that the PAN
from southern Africa and Brazil is transported towards
America by the circulation around a large upper-level
anticyclone and then lifted to the UTLS in the NAM region.
This is also evident in the Africa —10 % simulation.

The vertical distribution of simulated HNO3 over the mon-
soon regimes shows low concentrations above 10km at the
foothills of the Himalayas. In contrast, the results show
strong uplifting of HNO3 into the UT with NAM convec-
tion. This may be due to the fact that NAM convection is not
as intense as the ASM and there may be more wet removal
of nitrogen oxides in the ASM convection. The model sim-
ulations indicate a higher efficiency of NO, conversion to
HNO3 over the Indian region compared to NAM.

The change in emission (both NOy and NMVOCs emis-
sions were simultaneously reduced by 10 %) over each of the
ASM, WAM and NAM regions shows that Asia —10 % trans-
ports ~ 5-30 ppt of PAN in the UTLS over Asia and ~ 1—
10 ppt in the UTLS northern subtropics and mid-latitudes.
North America —10 % simulation shows transport of ~ 1—
5ppt of PAN over the Atlantic, Europe and North China
(between 12 and 14km) and 0.4-3 ppt over Asia (nearly
16 km). Africa —10 % simulation shows transport from equa-
torial Africa to the Atlantic and North America between 6
and 8 km, which is then transported to Asia by upper tropo-
spheric westerly winds (near 12 km).

Transport of HNO;3 is deeper in the UT (~ 16km)
in Asia—10% simulation than North America—10%
and Africa—10% simulations. Asia —10 %, North Amer-
ica—10% and Africa —10 % simulations show transport of
ozone ~ 1-2ppt, 0.8—1.5 ppt and 0.4-0.6 ppt in the UT over
respective regions.

In the UT between 6 and 10km, transport of HNOs3 by
Asia—10% (~3-10ppt of HNO3 to tropical America) is
higher than North America —10 % (transport of 3—7 ppt of
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HNO3 to China and India) and Africa—10 % (~ 3-5 ppt of
HNOj3 to tropical America, China and India) simulations.
Similarly transport of ozone is higher for Asia —10 % than
North America —10 % and Africa —10 % simulations. Com-
parison of emission change over Asia, North America and
Africa shows highest transport of HNO3; and ozone in the
UT over Asia and least over Africa.

Lightning production of NO, may enhance PAN concen-
trations in the UT and affect its transport into the lower
stratosphere. The percentage change in lightning-produced
ozone, HNOj3, PAN and NO, has been evaluated with a sen-
sitivity simulation. In the UT, lightning causes significant
increases in these species over equatorial America, equa-
torial Africa and the ASM region. These regions coincide
with intense convective zones with significant vertical trans-
port. Lighting production is higher over equatorial Africa and
America compared to the ASM. However, the vertical dis-
tribution shows that higher amounts of PAN are transported
into the UT in the ASM region. This indicates that the contri-
bution of anthropogenic emissions to PAN in the UTLS over
the ASM is higher than that of lightning. This is consistent
with the fact that anthropogenic emissions in the ASM region
are higher than in the NAM and WAM (Lamsal et al., 2011;
Miyazak et al., 2012).

The Supplement related to this article is available online
at doi:10.5194/acp-15-11477-2015-supplement.
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