000256544 001__ 256544 000256544 005__ 20210129220734.0 000256544 0247_ $$2doi$$a10.1016/j.jhydrol.2014.11.001 000256544 0247_ $$2WOS$$aWOS:000364249000016 000256544 037__ $$aFZJ-2015-06428 000256544 082__ $$a690 000256544 1001_ $$0P:(DE-HGF)0$$aMayr, C.$$b0$$eCorresponding author 000256544 245__ $$aOxygen isotope ratios of chironomids, aquatic macrophytes and ostracods for lake-water isotope reconstructions - results of a calibration study in Patagonia 000256544 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015 000256544 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1447854607_4289 000256544 3367_ $$2DataCite$$aOutput Types/Journal article 000256544 3367_ $$00$$2EndNote$$aJournal Article 000256544 3367_ $$2BibTeX$$aARTICLE 000256544 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000256544 3367_ $$2DRIVER$$aarticle 000256544 520__ $$aOxygen stable isotopes (δ18O) of biogenic sedimentary components from lake sediment archives, such as ostracod valves, are frequently used for palaeoclimatic reconstructions. However, the effects of host water isotope changes, temperature-dependent fractionations, and vital effects on the isotopic ratios of such biogenic proxies often cannot be disentangled. Here, δ18O values of ostracod valves, head capsules of chironomid larvae and aquatic macrophyte cellulose from various lake and stream sites in southern Patagonia (41–52°S) are compared with δ18O values of their host waters. The best correlation between δ18O values of bioproxy and host water was obtained for aquatic cellulose exhibiting a slope of the regression of almost unity. Chironomid head capsules showed a strong correlation, but the data set was rather small (seven sites). The δ18O values of ostracod valves showed strong inter-specific vital effects. Strong offsets of ostracod values from isotopic equilibrium are possibly explained by re-working of subfossil valves, seasonality effects or different chemical composition of host waters. A weak, but significant temperature dependency of oxygen isotope fractionation was observed for cellulose of one aquatic taxon (Myriophyllum) and for ostracod calcite, but not for chironomids and aquatic moss cellulose. The present dataset suggests that δ18O values of aquatic cellulose are the most reliable proxy for host water isotope reconstructions, but clearly more investigations are needed to substantiate this finding. 000256544 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000256544 7001_ $$0P:(DE-HGF)0$$aLaprida, C.$$b1 000256544 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b2 000256544 7001_ $$0P:(DE-HGF)0$$aMartin, R. S.$$b3 000256544 7001_ $$0P:(DE-HGF)0$$aMassaferro, J.$$b4 000256544 7001_ $$0P:(DE-HGF)0$$aRamon-Mercau, J.$$b5 000256544 7001_ $$0P:(DE-Juel1)129557$$aWissel, Holger$$b6 000256544 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2014.11.001$$nPart 2$$p600-607$$tJournal of hydrology$$v529$$x0022-1694$$y2015 000256544 8564_ $$uhttps://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.pdf$$yRestricted 000256544 8564_ $$uhttps://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.gif?subformat=icon$$xicon$$yRestricted 000256544 8564_ $$uhttps://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000256544 8564_ $$uhttps://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000256544 8564_ $$uhttps://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000256544 8564_ $$uhttps://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000256544 909CO $$ooai:juser.fz-juelich.de:256544$$pVDB:Earth_Environment$$pVDB 000256544 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000256544 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000256544 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2014 000256544 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000256544 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000256544 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000256544 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000256544 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000256544 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000256544 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000256544 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000256544 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000256544 9141_ $$y2015 000256544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000256544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129557$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000256544 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000256544 920__ $$lyes 000256544 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000256544 980__ $$ajournal 000256544 980__ $$aVDB 000256544 980__ $$aI:(DE-Juel1)IBG-3-20101118 000256544 980__ $$aUNRESTRICTED