001     256544
005     20210129220734.0
024 7 _ |2 doi
|a 10.1016/j.jhydrol.2014.11.001
024 7 _ |2 WOS
|a WOS:000364249000016
037 _ _ |a FZJ-2015-06428
082 _ _ |a 690
100 1 _ |0 P:(DE-HGF)0
|a Mayr, C.
|b 0
|e Corresponding author
245 _ _ |a Oxygen isotope ratios of chironomids, aquatic macrophytes and ostracods for lake-water isotope reconstructions - results of a calibration study in Patagonia
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1447854607_4289
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Oxygen stable isotopes (δ18O) of biogenic sedimentary components from lake sediment archives, such as ostracod valves, are frequently used for palaeoclimatic reconstructions. However, the effects of host water isotope changes, temperature-dependent fractionations, and vital effects on the isotopic ratios of such biogenic proxies often cannot be disentangled. Here, δ18O values of ostracod valves, head capsules of chironomid larvae and aquatic macrophyte cellulose from various lake and stream sites in southern Patagonia (41–52°S) are compared with δ18O values of their host waters. The best correlation between δ18O values of bioproxy and host water was obtained for aquatic cellulose exhibiting a slope of the regression of almost unity. Chironomid head capsules showed a strong correlation, but the data set was rather small (seven sites). The δ18O values of ostracod valves showed strong inter-specific vital effects. Strong offsets of ostracod values from isotopic equilibrium are possibly explained by re-working of subfossil valves, seasonality effects or different chemical composition of host waters. A weak, but significant temperature dependency of oxygen isotope fractionation was observed for cellulose of one aquatic taxon (Myriophyllum) and for ostracod calcite, but not for chironomids and aquatic moss cellulose. The present dataset suggests that δ18O values of aquatic cellulose are the most reliable proxy for host water isotope reconstructions, but clearly more investigations are needed to substantiate this finding.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Laprida, C.
|b 1
700 1 _ |0 P:(DE-Juel1)129567
|a Lücke, Andreas
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Martin, R. S.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Massaferro, J.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Ramon-Mercau, J.
|b 5
700 1 _ |0 P:(DE-Juel1)129557
|a Wissel, Holger
|b 6
773 _ _ |0 PERI:(DE-600)1473173-3
|a 10.1016/j.jhydrol.2014.11.001
|n Part 2
|p 600-607
|t Journal of hydrology
|v 529
|x 0022-1694
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256544/files/1-s2.0-S0022169414008853-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:256544
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129567
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129557
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J HYDROL : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21