000256547 001__ 256547
000256547 005__ 20250129094235.0
000256547 0247_ $$2doi$$a10.3390/membranes5040532
000256547 0247_ $$2Handle$$a2128/9383
000256547 0247_ $$2WOS$$aWOS:000367793700003
000256547 0247_ $$2altmetric$$aaltmetric:4566554
000256547 0247_ $$2pmid$$apmid:26426063
000256547 037__ $$aFZJ-2015-06431
000256547 041__ $$aEnglish
000256547 082__ $$a570
000256547 1001_ $$0P:(DE-HGF)0$$aTang, Jennifer$$b0
000256547 245__ $$aStrong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes
000256547 260__ $$aBasel$$bMDPI$$c2015
000256547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1446802664_12655
000256547 3367_ $$2DataCite$$aOutput Types/Journal article
000256547 3367_ $$00$$2EndNote$$aJournal Article
000256547 3367_ $$2BibTeX$$aARTICLE
000256547 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256547 3367_ $$2DRIVER$$aarticle
000256547 520__ $$aNIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.
000256547 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000256547 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000256547 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000256547 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000256547 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000256547 588__ $$aDataset connected to CrossRef
000256547 7001_ $$0P:(DE-HGF)0$$aAlsop, Richard$$b1
000256547 7001_ $$0P:(DE-Juel1)130943$$aSchmalzl, Karin$$b2
000256547 7001_ $$0P:(DE-HGF)0$$aEpand, Richard$$b3
000256547 7001_ $$0P:(DE-HGF)0$$aRheinstädter, Maikel$$b4$$eCorresponding author
000256547 773__ $$0PERI:(DE-600)2614641-1$$a10.3390/membranes5040532$$gVol. 5, no. 4, p. 532 - 552$$n4$$p532 - 552$$tMembranes$$v5$$x2077-0375$$y2015
000256547 8564_ $$uhttps://juser.fz-juelich.de/record/256547/files/membranes-05-00532.pdf$$yOpenAccess
000256547 8564_ $$uhttps://juser.fz-juelich.de/record/256547/files/membranes-05-00532.gif?subformat=icon$$xicon$$yOpenAccess
000256547 8564_ $$uhttps://juser.fz-juelich.de/record/256547/files/membranes-05-00532.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256547 8564_ $$uhttps://juser.fz-juelich.de/record/256547/files/membranes-05-00532.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256547 8564_ $$uhttps://juser.fz-juelich.de/record/256547/files/membranes-05-00532.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256547 8564_ $$uhttps://juser.fz-juelich.de/record/256547/files/membranes-05-00532.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256547 909CO $$ooai:juser.fz-juelich.de:256547$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000256547 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256547 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000256547 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000256547 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256547 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256547 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256547 9141_ $$y2015
000256547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130943$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256547 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000256547 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000256547 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000256547 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000256547 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000256547 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000256547 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000256547 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000256547 9201_ $$0I:(DE-Juel1)JCNS-ILL-20110128$$kJCNS-ILL$$lJCNS-ILL$$x3
000256547 9801_ $$aUNRESTRICTED
000256547 9801_ $$aFullTexts
000256547 980__ $$ajournal
000256547 980__ $$aVDB
000256547 980__ $$aUNRESTRICTED
000256547 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000256547 980__ $$aI:(DE-Juel1)PGI-4-20110106
000256547 980__ $$aI:(DE-82)080009_20140620
000256547 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000256547 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000256547 981__ $$aI:(DE-Juel1)PGI-4-20110106
000256547 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128