000256575 001__ 256575
000256575 005__ 20240712101003.0
000256575 0247_ $$2doi$$a10.5194/acp-15-5873-2015
000256575 0247_ $$2ISSN$$a1680-7316
000256575 0247_ $$2ISSN$$a1680-7324
000256575 0247_ $$2Handle$$a2128/9384
000256575 0247_ $$2WOS$$aWOS:000355289200034
000256575 037__ $$aFZJ-2015-06450
000256575 041__ $$aEnglish
000256575 082__ $$a550
000256575 1001_ $$0P:(DE-HGF)0$$aTonttila, J.$$b0$$eCorresponding author
000256575 245__ $$aTurbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar
000256575 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000256575 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1447070402_30063
000256575 3367_ $$2DataCite$$aOutput Types/Journal article
000256575 3367_ $$00$$2EndNote$$aJournal Article
000256575 3367_ $$2BibTeX$$aARTICLE
000256575 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256575 3367_ $$2DRIVER$$aarticle
000256575 520__ $$aThe turbulent structure of a stratocumulus-topped marine boundary layer over a 2-day period is observed with a Doppler lidar at Mace Head in Ireland. Using profiles of vertical velocity statistics, the bulk of the mixing is identified as cloud driven. This is supported by the pertinent feature of negative vertical velocity skewness in the sub-cloud layer which extends, on occasion, almost to the surface. Both coupled and decoupled turbulence characteristics are observed. The length and timescales related to the cloud-driven mixing are investigated and shown to provide additional information about the structure and the source of the mixing inside the boundary layer. They are also shown to place constraints on the length of the sampling periods used to derive products, such as the turbulent dissipation rate, from lidar measurements. For this, the maximum wavelengths that belong to the inertial subrange are studied through spectral analysis of the vertical velocity. The maximum wavelength of the inertial subrange in the cloud-driven layer scales relatively well with the corresponding layer depth during pronounced decoupled structure identified from the vertical velocity skewness. However, on many occasions, combining the analysis of the inertial subrange and vertical velocity statistics suggests higher decoupling height than expected from the skewness profiles. Our results show that investigation of the length scales related to the inertial subrange significantly complements the analysis of the vertical velocity statistics and enables a more confident interpretation of complex boundary layer structures using measurements from a Doppler lidar.
000256575 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000256575 588__ $$aDataset connected to CrossRef
000256575 7001_ $$0P:(DE-HGF)0$$aO'Connor, E. J.$$b1
000256575 7001_ $$0P:(DE-HGF)0$$aHellsten, A.$$b2
000256575 7001_ $$0P:(DE-Juel1)157625$$aHirsikko, A.$$b3
000256575 7001_ $$0P:(DE-HGF)0$$aO'Dowd, C.$$b4
000256575 7001_ $$0P:(DE-HGF)0$$aJärvinen, H.$$b5
000256575 7001_ $$0P:(DE-HGF)0$$aRäisänen, P.$$b6
000256575 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-5873-2015$$gVol. 15, no. 10, p. 5873 - 5885$$n10$$p5873 - 5885$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000256575 8564_ $$uwww.atmos-chem-phys.net/15/5873/2015/
000256575 8564_ $$uhttps://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.pdf$$yOpenAccess
000256575 8564_ $$uhttps://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.gif?subformat=icon$$xicon$$yOpenAccess
000256575 8564_ $$uhttps://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256575 8564_ $$uhttps://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256575 8564_ $$uhttps://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256575 8564_ $$uhttps://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256575 909CO $$ooai:juser.fz-juelich.de:256575$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000256575 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000256575 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256575 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000256575 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256575 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000256575 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000256575 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256575 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256575 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256575 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256575 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000256575 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256575 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256575 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256575 9141_ $$y2015
000256575 920__ $$lyes
000256575 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000256575 9801_ $$aUNRESTRICTED
000256575 9801_ $$aFullTexts
000256575 980__ $$ajournal
000256575 980__ $$aVDB
000256575 980__ $$aUNRESTRICTED
000256575 980__ $$aI:(DE-Juel1)IEK-8-20101013
000256575 981__ $$aI:(DE-Juel1)ICE-3-20101013