001     256575
005     20240712101003.0
024 7 _ |2 doi
|a 10.5194/acp-15-5873-2015
024 7 _ |2 ISSN
|a 1680-7316
024 7 _ |2 ISSN
|a 1680-7324
024 7 _ |2 Handle
|a 2128/9384
024 7 _ |2 WOS
|a WOS:000355289200034
037 _ _ |a FZJ-2015-06450
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Tonttila, J.
|b 0
|e Corresponding author
245 _ _ |a Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1447070402_30063
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a The turbulent structure of a stratocumulus-topped marine boundary layer over a 2-day period is observed with a Doppler lidar at Mace Head in Ireland. Using profiles of vertical velocity statistics, the bulk of the mixing is identified as cloud driven. This is supported by the pertinent feature of negative vertical velocity skewness in the sub-cloud layer which extends, on occasion, almost to the surface. Both coupled and decoupled turbulence characteristics are observed. The length and timescales related to the cloud-driven mixing are investigated and shown to provide additional information about the structure and the source of the mixing inside the boundary layer. They are also shown to place constraints on the length of the sampling periods used to derive products, such as the turbulent dissipation rate, from lidar measurements. For this, the maximum wavelengths that belong to the inertial subrange are studied through spectral analysis of the vertical velocity. The maximum wavelength of the inertial subrange in the cloud-driven layer scales relatively well with the corresponding layer depth during pronounced decoupled structure identified from the vertical velocity skewness. However, on many occasions, combining the analysis of the inertial subrange and vertical velocity statistics suggests higher decoupling height than expected from the skewness profiles. Our results show that investigation of the length scales related to the inertial subrange significantly complements the analysis of the vertical velocity statistics and enables a more confident interpretation of complex boundary layer structures using measurements from a Doppler lidar.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a O'Connor, E. J.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Hellsten, A.
|b 2
700 1 _ |0 P:(DE-Juel1)157625
|a Hirsikko, A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a O'Dowd, C.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Järvinen, H.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Räisänen, P.
|b 6
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-15-5873-2015
|g Vol. 15, no. 10, p. 5873 - 5885
|n 10
|p 5873 - 5885
|t Atmospheric chemistry and physics
|v 15
|x 1680-7324
|y 2015
856 4 _ |u www.atmos-chem-phys.net/15/5873/2015/
856 4 _ |u https://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256575/files/acp-15-5873-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256575
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21