000256583 001__ 256583
000256583 005__ 20240712100836.0
000256583 0247_ $$2doi$$a10.5194/acpd-15-9941-2015
000256583 0247_ $$2ISSN$$a1680-7367
000256583 0247_ $$2ISSN$$a1680-7375
000256583 0247_ $$2Handle$$a2128/9385
000256583 037__ $$aFZJ-2015-06457
000256583 041__ $$aEnglish
000256583 082__ $$a550
000256583 1001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b0$$eCorresponding author$$ufzj
000256583 245__ $$aImpact of different Asian source regions on the composition of the Asian monsoon anticyclone and on the extratropical lowermost stratosphere
000256583 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000256583 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1447070507_30062
000256583 3367_ $$2DataCite$$aOutput Types/Journal article
000256583 3367_ $$00$$2EndNote$$aJournal Article
000256583 3367_ $$2BibTeX$$aARTICLE
000256583 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256583 3367_ $$2DRIVER$$aarticle
000256583 520__ $$aThe impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by CLaMS simulations using artificial emission tracers. Our simulations show that the Asian monsoon anticyclone is highly variable in location and shape and oscillates between 2 states: first a symmetric anticyclone and second, an asymmetric anticyclone either elongated or split in two smaller anticyclones. A maximum in the distribution of air originating from Indian/Chinese boundary layer sources is usually found in the core of the symmetric anticyclone, in contrast the asymmetric state is characterised by a double peak structure in the horizontal distribution of air originating from India and China. The simulated horizontal distribution of artificial emission tracers for India/China is in agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). The contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed, but in general the highest contributions are from North India and Southeast Asia at 380 K. In the early (June to mid-July) and late (mid-August to October) period of the monsoon 2012, contributions of emissions from Southeast Asia are highest and in the intervening period (≈ mid-July to mid-August) emissions from North India have the largest impact. Further, our simulations confirm that the thermal tropopause above the anticyclone constitutes a vertical transport barrier. Enhanced contributions of emission tracers for Asia are found at the northern flank of the Asian monsoon anticyclone between double tropopauses indicating an isentropic transport from the anticyclone into the lowermost stratosphere.
000256583 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000256583 588__ $$aDataset connected to CrossRef
000256583 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b1$$ufzj
000256583 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b2$$ufzj
000256583 7001_ $$0P:(DE-Juel1)129122$$aGrooss, Jens-Uwe$$b3$$ufzj
000256583 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b4$$ufzj
000256583 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-15-9941-2015$$gVol. 15, no. 7, p. 9941 - 9995$$n7$$p9941 - 9995$$tAtmospheric chemistry and physics / Discussions$$v15$$x1680-7375$$y2015
000256583 8564_ $$uhttps://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.pdf$$yOpenAccess
000256583 8564_ $$uhttps://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.gif?subformat=icon$$xicon$$yOpenAccess
000256583 8564_ $$uhttps://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256583 8564_ $$uhttps://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256583 8564_ $$uhttps://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256583 8564_ $$uhttps://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256583 8767_ $$92015-07-01$$d2015-07-01$$eAPC$$jZahlung erfolgt$$pacp-2015-103
000256583 909CO $$ooai:juser.fz-juelich.de:256583$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000256583 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256583 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256583 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000256583 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000256583 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256583 9141_ $$y2015
000256583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256583 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000256583 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000256583 9801_ $$aUNRESTRICTED
000256583 9801_ $$aFullTexts
000256583 980__ $$ajournal
000256583 980__ $$aVDB
000256583 980__ $$aUNRESTRICTED
000256583 980__ $$aI:(DE-Juel1)IEK-7-20101013
000256583 980__ $$aAPC
000256583 981__ $$aI:(DE-Juel1)ICE-4-20101013