001     256583
005     20240712100836.0
024 7 _ |2 doi
|a 10.5194/acpd-15-9941-2015
024 7 _ |2 ISSN
|a 1680-7367
024 7 _ |2 ISSN
|a 1680-7375
024 7 _ |2 Handle
|a 2128/9385
037 _ _ |a FZJ-2015-06457
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)129164
|a Vogel, Bärbel
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and on the extratropical lowermost stratosphere
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1447070507_30062
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a The impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by CLaMS simulations using artificial emission tracers. Our simulations show that the Asian monsoon anticyclone is highly variable in location and shape and oscillates between 2 states: first a symmetric anticyclone and second, an asymmetric anticyclone either elongated or split in two smaller anticyclones. A maximum in the distribution of air originating from Indian/Chinese boundary layer sources is usually found in the core of the symmetric anticyclone, in contrast the asymmetric state is characterised by a double peak structure in the horizontal distribution of air originating from India and China. The simulated horizontal distribution of artificial emission tracers for India/China is in agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). The contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed, but in general the highest contributions are from North India and Southeast Asia at 380 K. In the early (June to mid-July) and late (mid-August to October) period of the monsoon 2012, contributions of emissions from Southeast Asia are highest and in the intervening period (≈ mid-July to mid-August) emissions from North India have the largest impact. Further, our simulations confirm that the thermal tropopause above the anticyclone constitutes a vertical transport barrier. Enhanced contributions of emission tracers for Asia are found at the northern flank of the Asian monsoon anticyclone between double tropopauses indicating an isentropic transport from the anticyclone into the lowermost stratosphere.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129123
|a Günther, G.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129138
|a Müller, Rolf
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129122
|a Grooss, Jens-Uwe
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)129145
|a Riese, M.
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)2069857-4
|a 10.5194/acpd-15-9941-2015
|g Vol. 15, no. 7, p. 9941 - 9995
|n 7
|p 9941 - 9995
|t Atmospheric chemistry and physics / Discussions
|v 15
|x 1680-7375
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256583/files/acpd-15-9941-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256583
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129164
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129123
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129138
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129122
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129145
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21