000256589 001__ 256589
000256589 005__ 20240712100836.0
000256589 0247_ $$2doi$$a10.5194/acp-15-9143-2015
000256589 0247_ $$2ISSN$$a1680-7316
000256589 0247_ $$2ISSN$$a1680-7324
000256589 0247_ $$2Handle$$a2128/9386
000256589 0247_ $$2WOS$$aWOS:000360646500004
000256589 037__ $$aFZJ-2015-06463
000256589 041__ $$aEnglish
000256589 082__ $$a550
000256589 1001_ $$0P:(DE-Juel1)139013$$aRolf, C.$$b0$$eCorresponding author$$ufzj
000256589 245__ $$aTransport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
000256589 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000256589 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1447070593_30059
000256589 3367_ $$2DataCite$$aOutput Types/Journal article
000256589 3367_ $$00$$2EndNote$$aJournal Article
000256589 3367_ $$2BibTeX$$aARTICLE
000256589 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256589 3367_ $$2DRIVER$$aarticle
000256589 520__ $$aDehydration in the Antarctic winter stratosphere is a well-known phenomenon that is annually observed by satellites and occasionally observed by balloon-borne measurements. However, in situ measurements of dehydrated air masses in the Antarctic vortex are very rare. Here, we present detailed observations with the in situ and GLORIA remote sensing instrument payload aboard the German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv of water vapor were observed as far north as 47° S in an altitude between 12 and 13 km in the lowermost stratosphere. The dehydration can be traced back to individual ice formation events above the Antarctic Peninsula and Plateau, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air reaching down to the tropopause are detected with the high-resolution limb sounder, GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic lowermost stratosphere down to 7 km. With the help of a backward trajectory analysis, a midlatitude origin of the moist filaments in the vortex can be identified, while the dry air masses down to 7 km have stratospheric origins. Antarctic stratosphere–troposphere exchange (STE) and transport of dehydrated air masses into the troposphere are investigated. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with an isentropic exchange of air masses across the thermal tropopause. The transport into the troposphere is caused by air masses that are detached from the potential vorticity (PV) structure by Rossby wave breaking events and subsequently transported diabatically across the dynamical tropopause. Once transported to the troposphere, air masses with stratospheric origin can reach near-surface levels within several days.
000256589 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000256589 588__ $$aDataset connected to CrossRef
000256589 7001_ $$0P:(DE-Juel1)129108$$aAfchine, A.$$b1$$ufzj
000256589 7001_ $$0P:(DE-HGF)0$$aBozem, H.$$b2
000256589 7001_ $$0P:(DE-HGF)0$$aBuchholz, B.$$b3
000256589 7001_ $$0P:(DE-HGF)0$$aEbert, V.$$b4
000256589 7001_ $$0P:(DE-Juel1)143753$$aGuggenmoser, T.$$b5$$ufzj
000256589 7001_ $$0P:(DE-HGF)0$$aHoor, P.$$b6
000256589 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b7$$ufzj
000256589 7001_ $$0P:(DE-HGF)0$$aKretschmer, E.$$b8
000256589 7001_ $$0P:(DE-HGF)0$$aMüller, S.$$b9
000256589 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b10
000256589 7001_ $$0P:(DE-Juel1)129155$$aSpelten, N.$$b11$$ufzj
000256589 7001_ $$0P:(DE-HGF)0$$aSumińska-Ebersoldt, O.$$b12
000256589 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b13$$ufzj
000256589 7001_ $$0P:(DE-HGF)0$$aZahn, A.$$b14
000256589 7001_ $$0P:(DE-Juel1)129131$$aKrämer, M.$$b15$$ufzj
000256589 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-9143-2015$$gVol. 15, no. 16, p. 9143 - 9158$$n16$$p9143 - 9158$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000256589 8564_ $$uhttps://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.pdf$$yOpenAccess
000256589 8564_ $$uhttps://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.gif?subformat=icon$$xicon$$yOpenAccess
000256589 8564_ $$uhttps://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256589 8564_ $$uhttps://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256589 8564_ $$uhttps://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256589 8564_ $$uhttps://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256589 909CO $$ooai:juser.fz-juelich.de:256589$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000256589 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256589 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000256589 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256589 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000256589 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000256589 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256589 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256589 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256589 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256589 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000256589 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256589 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256589 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256589 9141_ $$y2015
000256589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143753$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000256589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000256589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000256589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich GmbH$$b15$$kFZJ
000256589 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000256589 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000256589 9801_ $$aUNRESTRICTED
000256589 9801_ $$aFullTexts
000256589 980__ $$ajournal
000256589 980__ $$aVDB
000256589 980__ $$aUNRESTRICTED
000256589 980__ $$aI:(DE-Juel1)IEK-7-20101013
000256589 981__ $$aI:(DE-Juel1)ICE-4-20101013