001     256589
005     20240712100836.0
024 7 _ |2 doi
|a 10.5194/acp-15-9143-2015
024 7 _ |2 ISSN
|a 1680-7316
024 7 _ |2 ISSN
|a 1680-7324
024 7 _ |2 Handle
|a 2128/9386
024 7 _ |2 WOS
|a WOS:000360646500004
037 _ _ |a FZJ-2015-06463
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)139013
|a Rolf, C.
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1447070593_30059
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Dehydration in the Antarctic winter stratosphere is a well-known phenomenon that is annually observed by satellites and occasionally observed by balloon-borne measurements. However, in situ measurements of dehydrated air masses in the Antarctic vortex are very rare. Here, we present detailed observations with the in situ and GLORIA remote sensing instrument payload aboard the German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv of water vapor were observed as far north as 47° S in an altitude between 12 and 13 km in the lowermost stratosphere. The dehydration can be traced back to individual ice formation events above the Antarctic Peninsula and Plateau, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air reaching down to the tropopause are detected with the high-resolution limb sounder, GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic lowermost stratosphere down to 7 km. With the help of a backward trajectory analysis, a midlatitude origin of the moist filaments in the vortex can be identified, while the dry air masses down to 7 km have stratospheric origins. Antarctic stratosphere–troposphere exchange (STE) and transport of dehydrated air masses into the troposphere are investigated. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with an isentropic exchange of air masses across the thermal tropopause. The transport into the troposphere is caused by air masses that are detached from the potential vorticity (PV) structure by Rossby wave breaking events and subsequently transported diabatically across the dynamical tropopause. Once transported to the troposphere, air masses with stratospheric origin can reach near-surface levels within several days.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129108
|a Afchine, A.
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Bozem, H.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Buchholz, B.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Ebert, V.
|b 4
700 1 _ |0 P:(DE-Juel1)143753
|a Guggenmoser, T.
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Hoor, P.
|b 6
700 1 _ |0 P:(DE-Juel1)129130
|a Konopka, P.
|b 7
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Kretschmer, E.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Müller, S.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Schlager, H.
|b 10
700 1 _ |0 P:(DE-Juel1)129155
|a Spelten, N.
|b 11
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Sumińska-Ebersoldt, O.
|b 12
700 1 _ |0 P:(DE-Juel1)129105
|a Ungermann, Jörn
|b 13
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Zahn, A.
|b 14
700 1 _ |0 P:(DE-Juel1)129131
|a Krämer, M.
|b 15
|u fzj
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-15-9143-2015
|g Vol. 15, no. 16, p. 9143 - 9158
|n 16
|p 9143 - 9158
|t Atmospheric chemistry and physics
|v 15
|x 1680-7324
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256589/files/acp-15-9143-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256589
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)139013
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129108
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143753
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129130
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129155
|a Forschungszentrum Jülich GmbH
|b 11
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129105
|a Forschungszentrum Jülich GmbH
|b 13
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129131
|a Forschungszentrum Jülich GmbH
|b 15
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21