000256592 001__ 256592
000256592 005__ 20220930130049.0
000256592 0247_ $$2doi$$a10.1002/smll.201502100
000256592 0247_ $$2ISSN$$a1613-6810
000256592 0247_ $$2ISSN$$a1613-6829
000256592 0247_ $$2WOS$$aWOS:000367917500010
000256592 037__ $$aFZJ-2015-06466
000256592 082__ $$a540
000256592 1001_ $$0P:(DE-HGF)0$$aSchmidt, Dirk Oliver$$b0
000256592 245__ $$aResistive Switching of Individual, Chemically Synthesized TiO $_{2}$ Nanoparticles
000256592 260__ $$aWeinheim$$bWiley-VCH$$c2015
000256592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450356952_16049
000256592 3367_ $$2DataCite$$aOutput Types/Journal article
000256592 3367_ $$00$$2EndNote$$aJournal Article
000256592 3367_ $$2BibTeX$$aARTICLE
000256592 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256592 3367_ $$2DRIVER$$aarticle
000256592 520__ $$aResistively switching devices are considered promising for next-generation nonvolatile random-access memories. Today, such memories are fabricated by means of “top–down approaches” applying thin films sandwiched between nanoscaled electrodes. In contrast, this work presents a “bottom–up approach” disclosing for the first time the resistive switching (RS) of individual TiO2 nanoparticles (NPs). The NPs, which have sizes of 80 and 350 nm, respectively, are obtained by wet chemical synthesis and thermally treated under oxidizing or vacuum conditions for crystallization, respectively. These NPs are deposited on a Pt/Ir bottom electrode and individual NPs are electrically characterized by means of a nanomanipulator system in situ, in a scanning electron microscope. While amorphous NPs and calcined NPs reveal no switching hysteresis, a very interesting behavior is found for the vacuum-annealed, crystalline TiO2–x NPs. These NPs reveal forming-free RS behavior, dominantly complementary switching (CS) and, to a small degree, bipolar switching (BS) characteristics. In contrast, similarly vacuum-annealed TiO2 thin films grown by atomic layer deposition show standard BS behavior under the same conditions. The interesting CS behavior of the TiO2–x NPs is attributed to the formation of a core–shell-like structure by re-oxidation of the reduced NPs as a unique feature.
000256592 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000256592 588__ $$aDataset connected to CrossRef
000256592 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b1
000256592 7001_ $$0P:(DE-Juel1)156365$$aZhang, Hehe$$b2
000256592 7001_ $$0P:(DE-HGF)0$$aLa Torre, Camilla$$b3
000256592 7001_ $$0P:(DE-Juel1)133839$$aBesmehn, Astrid$$b4
000256592 7001_ $$0P:(DE-HGF)0$$aNoyong, Michael$$b5
000256592 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b6
000256592 7001_ $$0P:(DE-HGF)0$$aSimon, Ulrich$$b7$$eCorresponding author
000256592 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.201502100$$gp. n/a - n/a$$n48$$p6444–6456$$tSmall$$v11$$x1613-6810$$y2015
000256592 8564_ $$uhttps://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.pdf$$yRestricted
000256592 8564_ $$uhttps://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.gif?subformat=icon$$xicon$$yRestricted
000256592 8564_ $$uhttps://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256592 8564_ $$uhttps://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256592 8564_ $$uhttps://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256592 8564_ $$uhttps://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256592 8767_ $$92015-12-22$$d2016-01-05$$eColour charges$$jZahlung erfolgt$$zRWTH pays charges for cover
000256592 909CO $$ooai:juser.fz-juelich.de:256592$$pOpenAPC$$pVDB$$popenCost
000256592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156365$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133839$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000256592 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000256592 9141_ $$y2015
000256592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256592 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2014
000256592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256592 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256592 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256592 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256592 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSMALL : 2014
000256592 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000256592 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000256592 980__ $$ajournal
000256592 980__ $$aVDB
000256592 980__ $$aI:(DE-Juel1)PGI-7-20110106
000256592 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000256592 980__ $$aUNRESTRICTED
000256592 980__ $$aAPC
000256592 981__ $$aI:(DE-Juel1)ZEA-3-20090406