001     256592
005     20220930130049.0
024 7 _ |a 10.1002/smll.201502100
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a WOS:000367917500010
|2 WOS
037 _ _ |a FZJ-2015-06466
082 _ _ |a 540
100 1 _ |a Schmidt, Dirk Oliver
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Resistive Switching of Individual, Chemically Synthesized TiO $_{2}$ Nanoparticles
260 _ _ |a Weinheim
|c 2015
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450356952_16049
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Resistively switching devices are considered promising for next-generation nonvolatile random-access memories. Today, such memories are fabricated by means of “top–down approaches” applying thin films sandwiched between nanoscaled electrodes. In contrast, this work presents a “bottom–up approach” disclosing for the first time the resistive switching (RS) of individual TiO2 nanoparticles (NPs). The NPs, which have sizes of 80 and 350 nm, respectively, are obtained by wet chemical synthesis and thermally treated under oxidizing or vacuum conditions for crystallization, respectively. These NPs are deposited on a Pt/Ir bottom electrode and individual NPs are electrically characterized by means of a nanomanipulator system in situ, in a scanning electron microscope. While amorphous NPs and calcined NPs reveal no switching hysteresis, a very interesting behavior is found for the vacuum-annealed, crystalline TiO2–x NPs. These NPs reveal forming-free RS behavior, dominantly complementary switching (CS) and, to a small degree, bipolar switching (BS) characteristics. In contrast, similarly vacuum-annealed TiO2 thin films grown by atomic layer deposition show standard BS behavior under the same conditions. The interesting CS behavior of the TiO2–x NPs is attributed to the formation of a core–shell-like structure by re-oxidation of the reduced NPs as a unique feature.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 1
700 1 _ |a Zhang, Hehe
|0 P:(DE-Juel1)156365
|b 2
700 1 _ |a La Torre, Camilla
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Besmehn, Astrid
|0 P:(DE-Juel1)133839
|b 4
700 1 _ |a Noyong, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Waser, Rainer
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Simon, Ulrich
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/smll.201502100
|g p. n/a - n/a
|0 PERI:(DE-600)2168935-0
|n 48
|p 6444–6456
|t Small
|v 11
|y 2015
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256592/files/Schmidt_et_al-Small.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:256592
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156365
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133839
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SMALL : 2014
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21