000256607 001__ 256607
000256607 005__ 20240610121234.0
000256607 0247_ $$2doi$$a10.1002/aelm.201500233
000256607 0247_ $$2WOS$$aWOS:000370335000012
000256607 037__ $$aFZJ-2015-06474
000256607 041__ $$aEnglish
000256607 082__ $$a621.3
000256607 1001_ $$0P:(DE-HGF)0$$aMarchewka, Astrid$$b0
000256607 245__ $$aNanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process
000256607 260__ $$aChichester$$bWiley$$c2016
000256607 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453713706_6244
000256607 3367_ $$2DataCite$$aOutput Types/Journal article
000256607 3367_ $$00$$2EndNote$$aJournal Article
000256607 3367_ $$2BibTeX$$aARTICLE
000256607 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256607 3367_ $$2DRIVER$$aarticle
000256607 520__ $$aResistive switching memories based on the valence change mechanism have attracted great attention due to their potential use in future nanoelectronics. The working principle relies on ion migration in an oxide matrix and subsequent nanoscale redox processes leading to a resistance change. While switching from a low resistive to a high resistive state, different intermediate resistance levels can be programmed by changing the maximum applied voltage, making resistive switches highly interesting for multibit data storage and neuromorphic applications. To date, this phenomenon, which is known as gradual reset, has been reported in various experimental studies, but a comprehensive physical understanding of this key phenomenon is missing. Here, a combined experimental and numerical modeling approach is presented to address these issues. Time-resolved pulse measurements are performed to study the reset kinetics in TaOx-based nano-crossbar structures. The results are analyzed using a 2D dynamic model of nonisothermal drift–diffusion transport in the mixed electronic–ionic conducting oxide including the effect of contact potential barriers. The model accurately describes the experimental data and provides physical insights into the processes determining the gradual reset. The gradual nature can be attributed to the temperature-accelerated oxygen-vacancy motion being governed by drift and diffusion processes approaching an equilibrium situation.
000256607 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000256607 588__ $$aDataset connected to CrossRef
000256607 7001_ $$0P:(DE-HGF)0$$aRoesgen, Bernd$$b1
000256607 7001_ $$0P:(DE-Juel1)145428$$aSkaja, Katharina$$b2
000256607 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b3
000256607 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b4
000256607 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b5
000256607 7001_ $$0P:(DE-Juel1)145504$$aRana, Vikas$$b6
000256607 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b7
000256607 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b8$$eCorresponding author
000256607 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.201500233$$gp. n/a - n/a$$n1$$pn/a - n/a$$tAdvanced Electronic Materials$$v2$$x2199-160X$$y2016
000256607 909CO $$ooai:juser.fz-juelich.de:256607$$pVDB
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145428$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145504$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000256607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000256607 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000256607 9141_ $$y2016
000256607 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256607 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256607 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256607 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000256607 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256607 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000256607 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000256607 980__ $$ajournal
000256607 980__ $$aVDB
000256607 980__ $$aUNRESTRICTED
000256607 980__ $$aI:(DE-Juel1)PGI-7-20110106
000256607 980__ $$aI:(DE-Juel1)PGI-5-20110106
000256607 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000256607 981__ $$aI:(DE-Juel1)PGI-5-20110106