001     256607
005     20240610121234.0
024 7 _ |a 10.1002/aelm.201500233
|2 doi
024 7 _ |a WOS:000370335000012
|2 WOS
037 _ _ |a FZJ-2015-06474
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a Marchewka, Astrid
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process
260 _ _ |a Chichester
|c 2016
|b Wiley
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453713706_6244
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Resistive switching memories based on the valence change mechanism have attracted great attention due to their potential use in future nanoelectronics. The working principle relies on ion migration in an oxide matrix and subsequent nanoscale redox processes leading to a resistance change. While switching from a low resistive to a high resistive state, different intermediate resistance levels can be programmed by changing the maximum applied voltage, making resistive switches highly interesting for multibit data storage and neuromorphic applications. To date, this phenomenon, which is known as gradual reset, has been reported in various experimental studies, but a comprehensive physical understanding of this key phenomenon is missing. Here, a combined experimental and numerical modeling approach is presented to address these issues. Time-resolved pulse measurements are performed to study the reset kinetics in TaOx-based nano-crossbar structures. The results are analyzed using a 2D dynamic model of nonisothermal drift–diffusion transport in the mixed electronic–ionic conducting oxide including the effect of contact potential barriers. The model accurately describes the experimental data and provides physical insights into the processes determining the gradual reset. The gradual nature can be attributed to the temperature-accelerated oxygen-vacancy motion being governed by drift and diffusion processes approaching an equilibrium situation.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Roesgen, Bernd
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Skaja, Katharina
|0 P:(DE-Juel1)145428
|b 2
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 3
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 4
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 5
700 1 _ |a Rana, Vikas
|0 P:(DE-Juel1)145504
|b 6
700 1 _ |a Waser, Rainer
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 8
|e Corresponding author
773 _ _ |a 10.1002/aelm.201500233
|g p. n/a - n/a
|0 PERI:(DE-600)2810904-1
|n 1
|p n/a - n/a
|t Advanced Electronic Materials
|v 2
|y 2016
|x 2199-160X
909 C O |o oai:juser.fz-juelich.de:256607
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145428
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145504
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-5-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21