000256608 001__ 256608
000256608 005__ 20240711085651.0
000256608 0247_ $$2doi$$a10.1016/j.ijggc.2015.10.005
000256608 0247_ $$2ISSN$$a1750-5836
000256608 0247_ $$2ISSN$$a1878-0148
000256608 0247_ $$2WOS$$aWOS:000367110200005
000256608 037__ $$aFZJ-2015-06475
000256608 041__ $$aEnglish
000256608 082__ $$a333.7
000256608 1001_ $$0P:(DE-HGF)0$$aEiberger, Jan$$b0
000256608 245__ $$aInfluence of coal power plant exhaust gas on the structure and performance of ceramic nanostructured gas separation membranes
000256608 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000256608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1447154366_30066
000256608 3367_ $$2DataCite$$aOutput Types/Journal article
000256608 3367_ $$00$$2EndNote$$aJournal Article
000256608 3367_ $$2BibTeX$$aARTICLE
000256608 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256608 3367_ $$2DRIVER$$aarticle
000256608 520__ $$aIn this work, we investigate the effect of coal power plant exhaust gas on amino-modified mesoporous ceramic membranes. The testing of ceramic membranes in the flue gas of coal-fired power plants represents a new approach, as testing under simulated flue gas conditions has already been undertaken, but not yet during direct exposure to exhaust gas. Flue gas exposure trials were carried out at a lignite-fueled power plant and a hard-coal-fueled power plant. Most experiments were conducted using a test rig designed to bring planar membrane samples in direct contact with unconditioned flue gas in the exhaust gas channel. Another test rig was designed to test membrane modules with pre-treated flue gas. The tested membranes had an asymmetrical structure consisting of a macroporous α-Al2O3 support coated with a mesoporous γ-Al2O3 or 8YSZ interlayer. The microporous functional top layer was made of amino-functionalized silica. The tests revealed different degradation mechanisms such as gypsum/fly ash deposition on the membrane surface, pore blocking by water condensation, chemical reactions and phase transformation. A detailed analysis was carried out to evaluate their impact on the membrane in order to assess membrane stability under real conditions. The suitability of these membranes for this application is critically discussed and an improved mode of membrane operation is proposed.
000256608 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000256608 588__ $$aDataset connected to CrossRef
000256608 7001_ $$0P:(DE-Juel1)144726$$aWilkner, Kai$$b1$$ufzj
000256608 7001_ $$0P:(DE-Juel1)145915$$aReetz, Corinna$$b2$$ufzj
000256608 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b3$$ufzj
000256608 7001_ $$0P:(DE-HGF)0$$aJordan, Natividad$$b4
000256608 7001_ $$0P:(DE-HGF)0$$ade Graaff, Marijke$$b5
000256608 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b6$$ufzj
000256608 7001_ $$0P:(DE-Juel1)129666$$aStöver, Detlev$$b7$$ufzj
000256608 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b8$$eCorresponding author$$ufzj
000256608 773__ $$0PERI:(DE-600)2322650-X$$a10.1016/j.ijggc.2015.10.005$$gVol. 43, p. 46 - 56$$p46 - 56$$tInternational journal of greenhouse gas control$$v43$$x1750-5836$$y2015
000256608 8564_ $$uhttps://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.pdf$$yRestricted
000256608 8564_ $$uhttps://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.gif?subformat=icon$$xicon$$yRestricted
000256608 8564_ $$uhttps://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256608 8564_ $$uhttps://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256608 8564_ $$uhttps://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256608 8564_ $$uhttps://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256608 909CO $$ooai:juser.fz-juelich.de:256608$$pVDB
000256608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144726$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145915$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000256608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129666$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000256608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000256608 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000256608 9141_ $$y2015
000256608 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J GREENH GAS CON : 2014
000256608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256608 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256608 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256608 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000256608 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256608 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000256608 980__ $$ajournal
000256608 980__ $$aVDB
000256608 980__ $$aI:(DE-Juel1)IEK-1-20101013
000256608 980__ $$aUNRESTRICTED
000256608 981__ $$aI:(DE-Juel1)IMD-2-20101013