001     256608
005     20240711085651.0
024 7 _ |a 10.1016/j.ijggc.2015.10.005
|2 doi
024 7 _ |a 1750-5836
|2 ISSN
024 7 _ |a 1878-0148
|2 ISSN
024 7 _ |a WOS:000367110200005
|2 WOS
037 _ _ |a FZJ-2015-06475
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Eiberger, Jan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of coal power plant exhaust gas on the structure and performance of ceramic nanostructured gas separation membranes
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1447154366_30066
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this work, we investigate the effect of coal power plant exhaust gas on amino-modified mesoporous ceramic membranes. The testing of ceramic membranes in the flue gas of coal-fired power plants represents a new approach, as testing under simulated flue gas conditions has already been undertaken, but not yet during direct exposure to exhaust gas. Flue gas exposure trials were carried out at a lignite-fueled power plant and a hard-coal-fueled power plant. Most experiments were conducted using a test rig designed to bring planar membrane samples in direct contact with unconditioned flue gas in the exhaust gas channel. Another test rig was designed to test membrane modules with pre-treated flue gas. The tested membranes had an asymmetrical structure consisting of a macroporous α-Al2O3 support coated with a mesoporous γ-Al2O3 or 8YSZ interlayer. The microporous functional top layer was made of amino-functionalized silica. The tests revealed different degradation mechanisms such as gypsum/fly ash deposition on the membrane surface, pore blocking by water condensation, chemical reactions and phase transformation. A detailed analysis was carried out to evaluate their impact on the membrane in order to assess membrane stability under real conditions. The suitability of these membranes for this application is critically discussed and an improved mode of membrane operation is proposed.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wilkner, Kai
|0 P:(DE-Juel1)144726
|b 1
|u fzj
700 1 _ |a Reetz, Corinna
|0 P:(DE-Juel1)145915
|b 2
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 3
|u fzj
700 1 _ |a Jordan, Natividad
|0 P:(DE-HGF)0
|b 4
700 1 _ |a de Graaff, Marijke
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 6
|u fzj
700 1 _ |a Stöver, Detlev
|0 P:(DE-Juel1)129666
|b 7
|u fzj
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 8
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.ijggc.2015.10.005
|g Vol. 43, p. 46 - 56
|0 PERI:(DE-600)2322650-X
|p 46 - 56
|t International journal of greenhouse gas control
|v 43
|y 2015
|x 1750-5836
856 4 _ |u https://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256608/files/1-s2.0-S175058361530092X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:256608
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144726
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145915
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129666
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J GREENH GAS CON : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21