000025856 001__ 25856
000025856 005__ 20180210130600.0
000025856 0247_ $$2DOI$$a10.1209/epl/i2002-00232-4
000025856 0247_ $$2WOS$$aWOS:000176877200013
000025856 0247_ $$2ISSN$$a0295-5075
000025856 037__ $$aPreJuSER-25856
000025856 041__ $$aeng
000025856 082__ $$a530
000025856 084__ $$2WoS$$aPhysics, Multidisciplinary
000025856 1001_ $$0P:(DE-Juel1)VDB5549$$aNowicki, M.$$b0$$uFZJ
000025856 245__ $$aUniversal exponents and step-step interactions on vicinal Pb(111) surfaces
000025856 260__ $$aLes Ulis$$bEDP Sciences$$c2002
000025856 300__ $$a239 - 244
000025856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000025856 3367_ $$2DataCite$$aOutput Types/Journal article
000025856 3367_ $$00$$2EndNote$$aJournal Article
000025856 3367_ $$2BibTeX$$aARTICLE
000025856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000025856 3367_ $$2DRIVER$$aarticle
000025856 440_0 $$01996$$aEurophysics Letters$$v59$$x0295-5075
000025856 500__ $$aRecord converted from VDB: 12.11.2012
000025856 520__ $$aA 1 mum diameter Pb crystallite, supported on Ru(001), was equilibrated and imaged by scanning tunneling microscopy at 298 K. The vicinal shapes close to the (111) facet at the top of the crystal were analyzed in detail to determine the critical shape exponent and the step-step interaction energy as well as the interaction constant of the potential. An average shape exponent of 1.47 and a step interaction energy of similar to32 meV/Angstrom(2) were obtained. The exponent is very close to the theoretically predicted universal value of 3/2 and as such provides clear evidence for a dominant 1/x(2) step interaction potential. The ratio of step free energy to step interaction energy for Pb at 298 K is similar to0.34.
000025856 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000025856 588__ $$aDataset connected to Web of Science
000025856 650_7 $$2WoSType$$aJ
000025856 7001_ $$0P:(DE-Juel1)VDB8642$$aBombis, C.$$b1$$uFZJ
000025856 7001_ $$0P:(DE-Juel1)VDB5552$$aEmundts, A.$$b2$$uFZJ
000025856 7001_ $$0P:(DE-Juel1)VDB5490$$aBonzel, D. I.$$b3$$uFZJ
000025856 7001_ $$0P:(DE-HGF)0$$aWynblatt, P.$$b4
000025856 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/epl/i2002-00232-4$$gVol. 59, p. 239 - 244$$p239 - 244$$q59<239 - 244$$tepl$$v59$$x0295-5075$$y2002
000025856 909CO $$ooai:juser.fz-juelich.de:25856$$pVDB
000025856 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000025856 9141_ $$y2002
000025856 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000025856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000025856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000025856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000025856 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000025856 970__ $$aVDB:(DE-Juel1)17233
000025856 980__ $$aVDB
000025856 980__ $$aConvertedRecord
000025856 980__ $$ajournal
000025856 980__ $$aI:(DE-Juel1)PGI-3-20110106
000025856 980__ $$aUNRESTRICTED
000025856 981__ $$aI:(DE-Juel1)PGI-3-20110106