Comment on "Nanoadhesion between Rough Surfaces"

In a recent Letter [1] Chow has studied the adhesion between solids with rough surfaces. He assumed that the surface roughness is self-affine fractal, but nevertheless treated the surface asperities as spherical bumps of identical radius R. This is similar to the classic paper by Fuller and Tabor [2], where it was shown that already a relative small surface roughness can completely remove the adhesion. However, self-affine fractal surfaces have roughness on many different length scales, and when this is taken into account a qualitatively new picture emerges (see below), where, e.g., the adhesion force may even vanish (or at least be strongly reduced), if the fractal dimension $D_{\rm f} > 2.5$. Thus the theory of Chow [1] overlooks the perhaps most important aspects of real surfaces—the existence of a wide distribution of length scales. Here I present some simple arguments which illustrate the profound importance of not excluding any surface roughness length scale in the analysis [3].

Fuller and Tabor have shown that for elastic solids with surface roughness on a *single length scale* λ , the competition between adhesion and elastic deformation is characterized by the parameter $\theta = Eh^2/\lambda\Delta\gamma$, where h is the amplitude of the surface roughness. (Chow instead introduced the parameter $\beta \sim \theta^{2/3}$, but in the present context θ is a more convenient quantity.) The parameter θ is the ratio between the elastic energy and the surface energy stored at the interface, assuming that complete contact occurs. When $\theta \gg 1$ only partial contact occurs, where the elastic solids make contact only close to the top of the highest asperities, while complete contact occurs when $\theta \ll 1$.

Surfaces of real solids have roughness on a wide distribution of length scales. Assume, for example, a self-affine fractal surface. In this case the statistical properties of the surface are invariant under the transformation

$$\mathbf{x} \to \mathbf{x}\zeta, \qquad z \to z\zeta^{\alpha},$$

where $\mathbf{x} = (x, y)$ is the 2D position vector in the surface plane, and where $0 < \alpha < 1$. This implies that if h_a is

the amplitude of the surface roughness on the length scale λ_a , then the amplitude h of the surface roughness on the length scale λ will be of order

$$h \approx h_a(\lambda/\lambda_a)^{\alpha}$$
.

Thus we get

$$\theta_{\rm a} = \theta (\lambda_{\rm a}/\lambda)^{2\alpha-1}$$

where $\theta_a = E h_a^2 / \lambda_a \Delta \gamma$. Hence, when we study the system on shorter and shorter length scale $\lambda_a < \lambda$, θ_a will decrease or increase depending on whether $\alpha > 1/2$ or $\alpha < 1/2$, respectively. In the former case, if $\theta < 1$ the adhesion will be important on any length scale $\lambda_a < \lambda$. In particular, if λ is the long-distance cutoff length λ_0 in the self-affine fractal distribution, then complete contact will occur at the interface. In the latter case, even if $\theta < 1$ so that the adhesion may seem important on the length scale λ , at short enough length scale $\theta_a > 1$. Thus, without a short-distance cutoff, adhesion and the area of real contact will vanish. In reality, a finite short-distance cutoff will always occur, but this case requires a more detailed study (see Ref. [3]). Finally, I suggest that the present problem may be studied by a renormalization group type of approach, where during the process of eliminating short-wavelength roughness components, the effective interfacial energy $\Delta \gamma_{\rm eff}(\lambda)$ depends on the wavelength λ of observation.

B. N. J. Persson

IFF, FZ-Jülich, 52425 Jülich, Germany

Received 25 July 2001; published 11 March 2002 DOI: 10.1103/PhysRevLett.88.129601 PACS numbers: 68.35.Gy, 05.40.-a, 68.35.Ct

- [1] T. S. Chow, Phys. Rev. Lett. **86**, 4592 (2001).
- [2] K. N. G. Fuller and D. Tabor, Proc. R. Soc. London A 345, 327 (1975).
- [3] B. N. J. Persson and E. Tosatti, J. Chem. Phys. 115, 5597 (2001).