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Abstract An improved implementation of the Fast Multipole Method to treat very large
systems is described. The implementation is the first step towards the Continuous Fast
Multipole Method to evaluate charge distributions in Density Functional and Hartree
Fock calculations more efficient.

1. Introduction

In several scientific applications such as molecular dynamics [1] and plasma physics [2]
the evaluation of a pairwise potential is required. Very often this is the most time
consuming step in a calculation. The direct method to evaluate these potentials scales
quadratically with the number of particles N which places a severe restraint on the size of
systems which can be treated. Many methods have been proposed to avoid the quadratic
scaling [3]. Unfortunately, all these methods lead to unpredictible errors because they
rely upon not generally applicable approximations [4]. In particular cut-off approaches
show errors which often can not be accepted due to the significance of the long range
charge-charge interaction. It is highly desired to avoid the order N2 scaling. One of the
methods to achieve linear scaling is Greengard’s [5] Fast Multipole Method (FMM). The
purpose of the FMM is to group together remote charges such that a collection of distant
charges can be treated as one single charge. The Fast Multipole Method expands local
charges in multipole expansions. The multipole expansions of several particles about a
common origin can be summed to represent a collection of point charges by just one
multipole expansion. The collections of point charges are grouped in boxes which form
the FMM tree. The FMM is a computational scheme how to manipulate these expansions
to achieve linear scaling. The Fast Multipole Method can be applied to the evaluation
of r−n(n > 0) pairwise interactions. Unfortunately, the FMM is not free of parameters.
The computation time and the accuracy depend on three parameters, the length of the
multipole expansions, the depth of the FMM tree and finally the separation criteria -
the number of boxes between two boxes which can interact via multipoles. It is very
inconvenient to set the parameters by a user-request. In addition, the three parameters
are not independent among each other. One can define a funtion f(L, D, ws) = 0, where
L ist the length of the expansion, D is the depth of the tree, and ws is the separation
criteria. The computation time t depends not only on L, D, and ws. The requested
threshold and the kind of distribution, homogeneous or heterogenous has also an impact
on the computation time. In our FMM implementation we minimize the computation
time t = t(L, D, ws, kind of distribution, threshold). L, D, and ws are the variables, the
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kind of distribution and the threshold are the parameters. With this approach we have
found a reasonable solution of the problem to separate the particles in near and far field.
Within the framework of the HPC-Chem project [6] our implementation of the FMM to
treat point charges in a very efficient way is the first step towards the CFMM (Continuous
Fast Multipole Method) to calculate charge distributions arising in Density Functional
and Hartree Fock calculations. The ideas of FMM can be applied to the evaluation
of Electron Repulsion Integrals (ERI’s). The computation of the ERI’s is in general a
step which requires O(n4) work regarding the number of basis functions n. By several
computational techniques [7] the scaling could be improved significantly to O(n2). The
use of CFMM gives the possibility to make a further improvement in scaling, from O(n2)
to O(n). The Coulomb interaction of two charge distributions decreases exponentially
with increasing separation, and the two distributions then interact as classical point
charges.

2. Theory

The basics of our FMM implementation are described by C. A. White and M. Head-
Gordon [8, 9]. In addition, a new scheme of estimating the FMM errors and an approach
to evaluate the Wigner rotation matrices [9, 10] more stable for higher multipole moments
has been implemented.

A. Factorization of inverse distance

The inverse distance between two point charges located at a = (a, α, β) and r = (r, θ, φ)
can be written as an expansion of the associated Legendre polynomials.
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The expansion converges under the condition a < r. γ is the angle between the two
vectors a and r. Eq. (2) and Eq. (3) represent a complete factorization of a charge-
charge interaction. On the basis on Eq. (3) one can define moments of a multipole
expansion. q is the particle charge.

ωlm = qOlm = qal 1

(l + |m|)
Plm(cos(α))e−imβ (4)
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From Eq. (3) one can also define a Taylor expansion.

µlm = qMlm = q
1

rl+1
(l − |m|)Plm(cos(θ))eimφ (5)

Combining Eq. (4) and Eq. (5) together a factorization of the inverse distance can be

written in a compact form.

1
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=

∞
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l
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The moments of a multipole expansion and the coefficients of a Taylor expansion about

a common origin can of course be summed.

B. Translation operators

Essential to the FMM are the three operators to translate multipole expansions and
Taylor expansions in space. The first operator, A, is used to shift a multipole expansion

from a to a + b.

ωlm(a + b) =

l
∑

j=0

j
∑

k=−j

Alm
jk (b)ωjk(a) (7)

The operator Alm
jk is given by

Alm
jk = Ol−j,m−k (8)

The second operator, B, transforms a multipole expansion into a Taylor expansion.

µlm =

∞
∑

j=0

j
∑
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Blm
jk ωjk (9)

The operator Blm
jk is given by

Blm
jk = Mj+l,k+m (10)

The third operator, C, translates a Taylor expansion of a point r about the origin to a

Taylor expansion of r about a point a.

µlm(r − a) =
∞

∑

j=0

j
∑

k=−j

C lm
jk (a)µjk(r) (11)

The operator C lm
jk is given by

C lm
jk = Oj−l,k−m (12)
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3. The Fast Multipole Method

The FMM consists of several parts. First all particles are enclosed by a box with coordi-
nate ranges [0,1]x[0,1]x[0,1]. The parent box which contains all the particles is divided in
half along each Cartesian axis to yield a set of 8 smaller child boxes. The child boxes are
subdivided again. The depth of the tree is determined so that the computation time be-
comes a minimum in achieving an error in the energy which is less or equal to a requested
threshold. The particles are sorted by box numbers using the radix sort algorithm [11]

which scales linearly. In addition to scaling and sorting the FMM consists of four passes
schematically shown in Fig. (1). In pass 1 the charges contained within each lowest level
box are expanded in multipoles about the center of the box. The multipole expansions
are translated to the center of the parent boxes. In pass 2 the multipole expansions are

transformed into Taylor expansions. The two boxes must be separated by at least one
box on the current level on the tree, but only provided that parents of the two boxes
are not separated on the next higher level on the tree. Pass 2 is by far the most time
comsuming step of the FMM. In pass 3 the parent’s Taylor expansions are translated to

the centers of the parent’s children. At the end of pass 3 each lowest level box contains
a Taylor expansion of all far field interactions. In pass 4 for each lowest level box the

multipole expansion and the Taylor expansion are multiplied. The sum over all lowest
level boxes gives the far field energy. Finally, in pass 5 the remaining near-field energy is

computed by the direct method.

4. The Wigner Rotation Matrices

The conventional Fast Multipole Method requires O(L4) work with regard to the length
of the multipole expansion L. O(L3) scaling can be achieved by performing the transla-
tions in three steps. First the moments of a multipole expansion or the coefficients of a
Taylor expansion are rotated about the z-axis and y-axis such that the phase factors in
Eq. (4) and Eq. (5) vanish and the associated Legendre polynomials Plm degenerate to
the Legendre polynomials Pl. In the second step the translations are performed.
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Finally, the translated multipole moments and the Taylor coefficients are rotated back

using the inverse rotation matrices. The rotation about the z-axis is simply a complex

multiplication. The only difficult portion is the determination of the Wigner rotation
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Fig. (1): Schematic view on one dimensional FMM with parameter ws = 1

matrices dl
km(θ) which correspond to the rotation about the y-axis. The analytical cal-

culation of the dl
km(θ) requires O(L4) work and is numerically instable.

dl
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1
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l ≥ 0 , k = −l, ..., l , |k| ≤ m ≤ l (17a)

dl
k m = (−1)k+mdl

−k−m (18)

l > 0 , m = −l, ..., l − 1 , k = −l, ...,−(m + 1) (18a)

The essential recursion relation we will use to determine the rotation matrices is given

by White [9] and Edmonds [10].
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Unfortunately, Eq. (19) becomes instable in case of higher moments. We have combined

Eq. (19) with a second recurrence to overcome the numerical instabilities.
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k m−1 =

√

l(l + 1) − k(k + 1)

l(l + 1) − m(m − 1)
dl
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kl =

1

2l

√

(2l)!

(l − k)!(l + k)!
(sin(θ))l−k(1 + cos(θ))k (20a)

In addition to the two recurrences the error accumulations are evaluated for both of the
recurrences to decide which recursion relation is more accurate for a given component of
the rotation matrix. Both of the recursion relations should be used only for cos(θ) ≥ 0.

In case cos(θ) < 0 addition theorems can be used given by Edmonds [10]. The combina-
tion of the two recurrences show a significant improvement of accuracy. Tab. (1) shows
the absolute errors for θ = π

2
.
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L First recursion relation Both recursion relations

5 1.20 · 10−15 1.11 · 10−16

10 3.33 · 10−14 2.78 · 10−16

15 1.65 · 10−12 7.49 · 10−16

20 1.99 · 10−10 1.50 · 10−15

25 1.35 · 10−8 6.27 · 10−15

30 1.07 · 10−6 6.89 · 10−14

35 9.64 · 10−5 1.38 · 10−13

40 8.89 · 10−3 1.35 · 10−12

45 5.52 · 10−1 4.48 · 10−12

50 1.18 · 102 3.13 · 10−11

55 9.63 · 103 1.27 · 10−10

60 1.54 · 106 6.04 · 10−10

65 9.79 · 107 4.83 · 10−9

Tab. (1): Maximum absolute errors in computation of the dl
km

5. Error estmation

The error estimation by White and Head-Gordon [8] gives an upper limit for the error
but is often not practible. We have used a different approach. The FMM has two error
sources, the truncation of the multipole expansions and the truncation in the transfor-
mation of the multipole moments to Taylor expansions.
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q is the vector of charges. C depends also on the kind of distribution.
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The components Ilmjk are defined by

Ilmjk =

√

(j − k + l − m)!(j + k + l + m)!
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∫ 1
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0
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∫ 1
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rl|dl
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Tab. (2) shows the number of multipoles depending on a requested threshold.

Req. abs. error Abs. error L

10−2 0.47 · 10−2 1
10−3 0.98 · 10−3 3
10−4 0.99 · 10−4 5
10−5 0.26 · 10−5 7
10−6 0.39 · 10−6 10
10−7 0.76 · 10−7 13
10−8 0.21 · 10−8 17
10−9 0.29 · 10−9 21
10−10 0.66 · 10−10 25
10−11 0.93 · 10−11 30
10−12 0.38 · 10−12 34
10−13 0.66 · 10−13 39

Tab. (2): Number of multipole moments depending on requested absolute errors

6. Implementation issues

Our FMM implementation is designed to evaluate systems consisting of billions of point
charges. Heterogeneous distributions can be treated in the same efficient way as ho-
mogeneous distributions. The parameters of the FMM are determined such that the
computation time is minimal depending on a requested threshold of the energy. All
empty boxes on the tree are completely neglected. Any arrays in the dimension of all
boxes are avoided. The maximal depth of the trees depends only on the integer length.
Logical bit operations are used for box numbering. A logical right shift by three posi-
tions of a box number results in the number of the parent box. A logical left shift by
three positions of a box number gives the number range of all child boxes. Our FMM
implementation is fully based on spherical coordinates.
We have made the first approach in parallelizing our FMM implementation. An efficiency
of more than 90% up to 16 CPU’s have been seen. In the parallel version Pass 3 is avoided
because it can not be parallelized efficiently. It is easily possible to shift the work which
is done in Pass 3 to Pass 4. All the remaining four passes are parallelized. Our paral-
lelization strategy is based on the replicated data model which is a severe bottleneck. We
will implement a data distributed version.
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7. Summary and Outlook

We have described an improved implementation of the rotation based Fast Multipole
Method to evaluate systems of point charges as the basis for the Continuous Fast Multi-
pole Method to treat charge distributions. First steps in parallelizing the program have
been made. Further work to improve the parallel performance is necessary.
The serial version of our FMM program is able to traet very large systems of point charges
up to several billions of particles. We have proposed a new approach for the separation of
near and far field within the theory of FMM to minimize the computation time depending
on an user-requested threshold.
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