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ABSTRACT The ‘‘Phot’’ protein family comprises blue-light photoreceptors that consist of two flavin mononucleotide (FMN)-
binding LOV (light, oxygen, and voltage) domains and a serine/threonine kinase domain. We have investigated the LOV1
domain of Phot1 from Chlamydomonas reinhardtii by time-resolved absorption spectroscopy. Photoexcitation of the dark form,
LOV1-447, causes transient bleaching and formation of two spectrally similar red-shifted intermediates that are both assigned to
triplet states of the FMN. The triplet states decay with time constants of 800 ns and 4 ms with an efficiency of[90% into a blue-
shifted intermediate, LOV1-390, that is attributed to a thiol adduct of cysteine 57 to FMN C(4a). LOV1-390 reverts to the dark
form in hundreds of seconds, the time constant being dependent on pH and salt concentration. In the mutant C57S, where the
thiol adduct cannot be formed, the triplet state displays an oxygen-dependent decay directly to the dark form. We present here
a spectroscopic characterization of an algal sensory photoreceptor in general and of a LOV1 domain photocycle in particular.
The results are discussed with respect to the behavior of the homologous LOV2 domain from oat.

INTRODUCTION

Phototropins and homologs, recently renamed Phot proteins

(Briggs et al., 2001), comprise a class of blue-light receptors

that are involved in phototropic plant movement (Christie

et al., 1998, 1999; Huala et al., 1997), chloroplast relocation

(Jarillo et al., 2001; Kagawa et al., 2001), and stomatal

opening in guard cells (Kinoshita et al., 2001). All Phot

proteins contain two LOV (light-, oxygen-, voltage-sensi-

tive) domains and a downstream serine/threonine kinase.

Heterologous expression studies have shown that one flavin

mononucleotide (FMN) is bound to each LOV domain

(Christie et al., 1999).

Absorption spectra have been published for LOV1 and

LOV2 (Christie et al., 1999), and it has been shown that both

LOV domains are bleached under continuous illumination

(Salomon et al., 2000), converting the LOV domain into

a blue-shifted species (lmax ¼ 390 nm) that only slowly

recovers within many seconds in darkness. Before time-

resolved spectroscopy was applied, Salomon et al. (2000)

proposed that a flavin C(4a) thiol adduct is formed between

FMN and a cysteine residue. This statement has been

supported by two experimental approaches. First, replacing

the cysteine of the highly conserved amino acid segment

NCRFLQG by alanine led to an unbleachable LOV domain

(Salomon et al., 2000). Second, the LOV2 domain of Avena
sativa (oat) Phot1 was reconstituted with various 13C/15N-

labeled isotopomers of FMN and investigated by NMR

spectroscopy. The light-driven formation of the flavin C(4a)

thiol adduct caused a large upfield shift of the C(4a) signal

(Salomon et al., 2001).

Time-resolved spectroscopy in the time range of 30 ns–

200 s, which allows conclusions about the photocycle, has

only been carried out with a LOV2 domain of Phot1 from A.

sativa (Swartz et al., 2001). The authors identified a triplet-

like species that is formed within \30 ns after light

excitation and decays with a time constant of 4 ms. The

triplet converts into a 390-nm absorbing metastable form that

decays with t ¼ 50 s. The LOV-390 was likely to resemble

the FMN-cysteine adduct. Based on pH titration of the

chromophore fluorescence, the authors suggested that the

reactive cysteine species is a thiolate.

Recently, the first Phot gene in a green alga was

discovered in Chlamydomonas reinhardtii. The gene en-

codes a 75-kDa protein that is smaller than its relatives

from higher plants (120 kDa). Expression analysis revealed

rather constant levels of Phot protein in the darkness during

the cell cycle, whereas expression was reduced in vegetative

cells in the light (Huang et al., 2002). When Phot expression

was down-regulated by using an antisense approach, the

blue-light dependent formation of sexually competent

gametes under nitrogen starvation was inhibited (Huang

and Beck, 2002). Thus the regulation of gametogenesis

under low nutrient conditions is mediated by Phot1. The

LOV1 domain from the algal Phot1 receptor was expressed

in Escherichia coli. Not only the sequence but also the basic

absorption and fluorescence properties are similar to LOV

domains from higher plant Phot1 receptors (Holzer et al.,

2002). A preliminary study of the kinetic properties of C.

reinhardtii LOV1 showed an exceptionally slow dark decay

rate after blue light irradiation (Kasahara et al., 2002). The

LOV1 domain from C. reinhardtii was crystallized and the

structure in the dark and illuminated state was determined to

1.9 Å and 2.8 Å resolution, respectively (Fedorov et al.,
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2003). Analysis of the crystal structure revealed that during

illumination the Cys-57 sulfur atom interacts covalently with

the FMN C(4a) atom at a distance of 1.9 Å. The overall

structure is similar to the LOV2 structure of the phy3-

receptor from the fern Adiantum capillus-veneris (Crosson

and Moffat, 2001, 2002).

Here, we present the photocycle of the LOV1 domain

from the C. reinhardtii Phot1 protein. The analysis of dy-

namic spectroscopic changes that follow light excitation

together with the structural information led to the de-

velopment of a light-triggered molecular reaction pathway.

The results are compared with published data on LOV2 from

higher plant Phot1.

MATERIALS AND METHODS

LOV1 expression and purification

The full length cDNA-clone (Genebank accession No. AJ 416557) (Huang

et al., 2002) of the C. reinhardtii phot1 (formerly named nph1 for non-

phototropic hypocotyl 1) was received from C. F. Beck and K. Huang,

Freiburg, Germany. The gene fragment encoding the FMN-binding LOV1

domain (amino acids 16–133) was amplified by PCR and inserted into the

XhoI and BamHI sites of the E. coli expression vector pET16 (Novagen,

Bad Soden, Germany) in such a way that the protein carries 1 Gly, 10 His,

and a protease cleavage site (factor Xa) derived from the vector sequences at

the N-terminal end. The protein was expressed in E. coli strain BL21 and

purified via a Ni-NTA column (Qiagen, Hilden, Germany). The C57S

mutant was generated by site-directed mutagenesis, and expressed and

purified like the wild-type LOV1.

In a second approach, the gene fragment encoding LOV1 was amplified

by PCR using oligonucleotide primers that contain EcoRI and HindIII

restriction sites. The PCR product was digested with EcoRI and HindIII

and cloned into the pMALC2-vector (New England Biolabs, Frankfurt,

Germany). A short DNA-sequence encoding 9 His was inserted into the

EcoRI site. The fusion protein MBP-LOV1 was expressed in BL21 and

purified via amylose resin (New England Biolabs) according to the in-

structions of the manufacturer.

The chromophore in LOV1-WT and LOV1-C57S is flavin mono-

nucleotide (FMN, riboflavin-59-phosphate) as determined by chromophore

extraction in 1% TCA, protein precipitation, and electrospray mass

spectroscopy (SSQ 7000, Thermo Finnigan, San Jose, CA, USA). For

injection, the samples were diluted in 0.5% acetic acid, 50% acetonitrile. The

determined molar mass of the apoprotein is 15,609 g mol�1, which is 130 g

mol�1 below the expected value (15,739 g mol�1), indicating that the N-

terminal methionine was cleaved off. The molar mass of 457 g mol�1 for the

chromophore corresponds to that of FMN. For spectroscopic experiments,

LOV1-WT and LOV1-C57S are diluted in 10 mM phosphate buffer, pH 8,

containing 10 mM NaCl.

UV/Vis spectra and dependence of slow kinetics
on pH and salt concentration

Absorption spectra were measured with a Lambda 9 spectrophotometer

(PerkinElmer, Frankfurt, Germany). The time sequence of absorption

spectra was recorded with a Specord S100B diode array spectrometer

(Analytik Jena, Jena, Germany). Samples at different pH values and

different salt concentrations were obtained by adding 1 M phosphate buffer

and 1 M sodium chloride solutions to the standard protein samples. The

samples were kept at 208C and irradiated for 30 s with a 50-W tungsten lamp

(Osram, München, Germany) through a 435-nm cutoff filter (GG435,

Schott, Germany). Subsequently, time traces at 475 nm were recorded in the

dark.

Time-resolved UV/Vis experiments at
single wavelengths

The sample was excited at the long side of a rectangular (10 3 2 mm)

fluorescence cuvette by a light pulse of 446-nm wavelength, 15-ns duration,

5 3 10 mm cross section, and 1 mJ energy from a Scanmate 2E dye laser

(Lambda Physik, Göttingen, Germany) pumped by the third harmonic of an

SL-803 Nd:YAG (Spectron Laser Systems, Rugby, England). The transient

absorption was measured along the 10-mm path perpendicular to the

excitation by a pulsed 150-W Xe lamp (MSP-05, Müller, Moosinning,

Germany). Two monochromators, one before and one after the sample,

served to select the wavelength with a resolution of 3 nm and eliminate

fluorescence and stray light. The transmitted signal was detected by a R446

photomultiplier (Hamamatsu Photonics, Herrsching, Germany) and rec-

orded with a 500-MHz digital storage oscilloscope (TDS 744A, Tektronix,

Beaverton, OR, USA) triggered by the excitation pulse via a photodiode. A

homemade trigger generator regulated the selection of single laser shots

from the 20-Hz pulse train of the laser and the synchronization of the

experiment. Each data set was generated by taking four averaged traces in

succession: the signal trace, its reference trace, a fluorescence signal without

measuring pulse, and a baseline without both light sources. In the case of

the wild-type LOV1, a sampling rate of 0.03 Hz was chosen to minimize

accumulation of the long-lived intermediate. The temperature was

maintained at 208C. Measurements under pure nitrogen and xenon at-

mosphere were performed by bubbling the gas through the solution for

20 min.

Time-resolved UV/Vis experiments with CCD
camera detection

A CCD camera detection setup was used to acquire time-resolved difference

spectra. A tunable optical parametric oscillator (GWU Lasertechnik,

Erftstadt, Germany) pumped by the third harmonic of a Quanta Ray GRC

12S Nd:YAG laser (Spectra-Physics, Mountain View, CA, USA) was used

for excitation. Pulses of 5-mJ energy and 5-ns duration at 450 nm were

guided to the sample by a quartz fiber bundle to achieve homogenous

illumination. The repetition rate of the laser was adjusted to the photocycling

time of the enzyme, i.e., as low as 0.01 Hz for wild-type LOV1 and as high

as 10 Hz for the C57S mutant. The probe light from a continuous Xe-lamp

(LXH100, Müller, Moosinning, Germany) was guided through a fiber

bundle, attenuated to an intensity of 100 mW/cm2 by a neutral gray filter,

collimated by a lens, and passed through the cuvette with the sample. The

transmitted light was imaged onto a second fiber bundle connected to the

entrance slit of a SpectraPro-150 spectrograph (Acton Research, Acton, MA,

USA) equipped with an intensified CCD camera (CCD-576G, Princeton

Instruments, Monmouth Junction, NJ, USA). The time resolution was

determined by the minimal gating time of 7 ns of the image intensifier (micro

channel plate). The dispersion of the grating allowed to cover a wavelength

range of 350 nm in a single experiment. Spectra with different midpoints of

the grating were appended to cover the visible wavelength range from 300 to

850 nm. A delay generator triggered the pulsed laser and synchronized it

with the gate of the CCD camera. Gating also effectively suppressed

interfering fluorescence and laser stray light.

Data analysis

The data sets from the transient spectral measurements were reduced for

global analysis by singular value decomposition (SVD). This method

separates the matrix of the wavelength- and time-resolved data into time-

dependent and spectral components of descending significance. In the case

of the CCD camera data, the MATLAB software (The MathWorks, Natick,
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MA, USA) was used. The data sets obtained with the diode array

spectrometer were analyzed by SVD and target factor analysis with

homemade software.

RESULTS

The dark form (LOV1-447)

The LOV1 domain of the algal phot1 was expressed in

E. coli and purified via affinity chromatography. The amino

acid sequence and a crystal structure with 1.9 Å resolution is

presented by Fedorov et al., 2003). The basic absorption

properties of LOV1 have been reported before (Holzer et al.,

2002). A representative spectrum is shown in the upper part

of Fig. 1 (solid line): The absorption bands centered at 447

and 360 nm represent the S0 ! S1 and S0 ! S2 transitions of

the FMN, respectively (Heelis, 1982). They exhibit vibronic

fine structure that is smeared out when the chromophore is

released from the apoprotein in aqueous solution. This

smearing could be due to solvent-induced inhomogeneous

broadening or due to the loss of motional constraints

imposed by the protein environment.

The long-lived intermediate

Irradiation of wild-type LOV1 with blue light (l\ 480 nm)

leads to partial bleaching of the absorption that recovers in

the dark on a timescale of several minutes. The UV/Vis

absorption spectrum of this long-lived intermediate was

obtained in the following way. The sample was irradiated at

pH 8 by a xenon flash. In 20-s time steps, we recorded a

sequence of absorption spectra with the diode array spec-

trometer. The sequence is shown in the lower part of Fig. 1.

The inset in this figure shows the temporal behavior of the

absorbance at 475 nm. The data were analyzed with target

factor analysis (Hendler and Shrager, 1994). This method

allows the extraction of the spectrum of the intermediate

even in the case when it completely overlaps with that of the

dark form. The result is unique if we impose the restrictions

that the spectrum must be positive at all wavelengths and

should not contain the absorption maximum at 475 nm of the

dark form. The spectrum obtained in this way shows a broad

absorption band at 390 nm without vibrational structure. It is

shown as the dotted line in the upper part of Fig. 1. This

intermediate spectrum (LOV1-390) is the first for a LOV1

domain. Salomon et al. (2000) obtained under continuous

illumination a similar spectrum in oat LOV2. The oat LOV1

domain was bleached to a photostationary state, suggesting

that it was only partially converted to a thiol adduct

(Salomon et al., 2000). Our intermediate spectrum can

accordingly be assigned to the covalent adduct of flavin

C(4a) and the cysteine 57 thiol group. Other cysteine

residues (Cys-32 and Cys-83) are too far away from the

chromophore to be able to react with the FMN (Fedorov et

al., 2003).

The decay kinetics of LOV1-390 was studied by

measuring time traces of the recovery of absorbance at 475

FIGURE 1 (Top) Absorption spectrum of wild-type LOV1 (solid line)

and the long-lived intermediate LOV1-390 (dotted line) extracted by target

factor analysis from the data shown below. (Bottom) Sequence of ab-

sorption spectra showing the relaxation of wild-type LOV1 from the pho-

tostationary state to the dark form after white-light irradiation. The inset

shows the temporal behavior of the absorbance at 475 nm.

FIGURE 2 pH dependence of the decay time of the wild-type long-lived

intermediate LOV1-390 at different sodium chloride concentrations (100

mM phosphate buffer). Time constants were derived from the recovery of

absorbance at 475 nm with a maximum deviation of 3% from the average

value. The lines are fitted curves corresponding to a general mechanistic

model, which yields a pKa between 5 and 6 of the involved acid-base pair.
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nm after illumination. A monoexponential fit to the recovery

yielded a time constant of t ¼ 200 s at 208C and pH 8 that is

close to the value of 168 s determined by Kasahara et al.

(2002). A variation of the pH of the sample revealed that the

reaction is considerably slower under acidic than under basic

conditions (see Fig. 2). Additionally, below pH 6 the time

constant is dependent on sodium chloride concentration at

a constant concentration of the phosphate buffer (100 mM).

Thus it seems that the decay is facilitated by a base located at

the surface of the protein. The pH dependence of the single

exponential decay time can be understood with the following

simple model: The system contains a basic center that is in-

volved in the back reaction. In the case that this base is in

the protonated form BH, the back reaction proceeds with

a rate constant k1. If the base is in the deprotonated form B�,

the rate constant of the process is k2. When the equilibrium

between both forms is established much faster than both k1

and k2, a monoexponential decay is observed with the

apparent rate constant

k ¼ k1x þ k2ð1 � xÞ; (1)

where x is the relative population of the protonated form.

The latter can be related to the concentration ratio by:

½B��
½BH� ¼ 10pH�pKa ¼ 1 � x

x
: (2)

This leads to the following dependence of the time constant

on the pH:

t ¼ 1

k
¼ 10ðpH�pKaÞ þ 1

10ðpH�pKaÞk2 þ k1

: (3)

The fit of Eq. 3 to the experimental data is shown in Fig. 2.

The data correspond well to the simple model with only three

parameters, using a pKa of the acid-base pair of 5.3 and 5.6

for 10 mM and 90 mM NaCl concentration, respectively.

The limiting time constants (t ¼ 1/k) are 250 s and 950 s at

low salt and 180 s and 1900 s at high salt concentration.

Inasmuch as the spontaneous back reaction from LOV1-

390 to LOV1-447 is slow, moderate blue-light irradiation

should lead to a complete conversion into LOV1-390. To

investigate this, a sample was illuminated with a 100-W

tungsten lamp through a 435-nm cutoff filter until the

photostationary state was reached. By varying the intensity

with neutral density filters, relative changes in absorbance

DA/A0 at 475 nm were observed (see Fig. 3). The ex-

perimental values could be fitted by an equation of the

form:

DA

A0

¼ RF

a þ F
; (4)

where F is the light intensity, R is the saturated value at

infinite intensity, and a is the intensity at which half of the

saturation is achieved. This approach enabled an extrapola-

tion to infinite light intensity that yielded a value of R¼ 0.84

at 475 nm, i.e., the absorption cannot be bleached below 16%

of the initial absorption. A model that yields this functional

form in terms of the quantum efficiencies for both reactions

and the absorption coefficients of both species at the probe

wavelength is presented in the Appendix. The conclusion of

our calculations is the following: Under the assumption that

the molar extinction coefficient of LOV1-390 at 475 nm is

less than 6% of that of LOV1-447, as derived from the

spectrum of the intermediate shown in Fig. 1, there must be

a photoinduced reaction from LOV1-390 back to LOV1-

447.

The short-lived intermediate

The kinetics of the photoreaction of wild-type LOV1 has

been followed after nanosecond excitation with a blue laser

FIGURE 3 Relative changes in absorbance of wild-type LOV1 at 475 nm

dependent on the relative intensity of irradiation. The solid line is a fitted

curve according to Eq. 4 reaching the limiting value of 0.84 at infinite light

intensity. The dashed line illustrates the limit of 0.94 expected in the absence

of a photoinduced back reaction from LOV1-390 to the dark form. This

value results from the absorption of LOV1-390 at 475 nm according to

Fig. 1.

FIGURE 4 Absorption difference spectra of wild-type LOV1 at indicated

delay times after excitation with a 450-nm laser pulse. The 1-ms spectrum

shows the formation of the intermediate LOV1-715.
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pulse. Fig. 4 shows difference spectra in the visible range at

indicated times after the pulse. The negative absorbance

changes at 447 nm and 475 nm correspond to the depletion

of LOV1-447. A red-shifted absorption band at 510 nm and

a deep red feature around 700 nm are discernible in the 1 ms

spectrum that decay during the transition to the subsequent

spectra. A band at 390 nm is present 1 ms after the flash. This

band decays only partially and then remains constant in the

millisecond range. This residual positive absorption at 390

nm is readily assigned to formation of the thiol adduct of

FMN based on the spectrum of the long-lived intermediate

shown in Fig. 1. The decay occurs on the timescale of

minutes.

The study of the early photointermediates is hampered by

the long cycling time of the enzyme. To reduce this, we have

employed the C57S mutant where the reactive thiol group is

replaced by a hydroxyl group and a flavin-cysteine adduct

cannot be formed. This allows a high repetition rate and

permits extensive averaging to improve the signal-to-noise

ratio. The dark form spectrum of the C57S mutant is shown

in Fig. 5 (top). It is very similar to the wild-type spectrum

except that all peaks are ;5 nm blue-shifted. The high

similarity is a strong indication that the mutation influences

the properties of the chromophore only to a minor extent. In

contrast to oat LOV2 (Swartz et al., 2001), the C57S mutant

shows the same fine structure as the wild type in the 350-nm

band. All absorbance difference bands of the C57S mutant

decay within 100 ms after blue-light excitation (see Fig. 5).

The kinetics of this decay have been analyzed by SVD. As

can be seen in Fig. 6 A, all of the spectral information is

included in only one component, whereas all other com-

ponents contain only noise. The negative bands at 442 nm

and 470 nm correspond to the dark form of the LOV1-

C57S mutant that is depleted by the laser pulse. Two strong

absorption bands appear with maxima at 648 nm and 715 nm.

Accordingly, the intermediate is referred to as LOV1-715.

It can be attributed to the absorption of a triplet state

of FMN along with its vibronic side band in agreement with

the assignment of Swartz et al. (2001) for oat LOV2, for

which a similar spectrum has been recorded up to 700

nm. Additionally, two bands at 379 nm and around 500 nm

appear that might be caused by triplet absorptions with

higher energy as inferred from literature data (Sakai and

Takahashi, 1996; Bernt et al., 1999). Because the chromo-

phore is left unchanged by the C57S mutation, the triplet

excited state must be observed in the wild-type as well.

Indeed, all four absorption bands of the C57S difference

spectrum also occur in wild-type LOV1 and evidently at the

same wavelengths (see Fig. 4). The band at 379 nm overlaps

in the wild-type with the rise of LOV1-390 absorption. The

relative intensity of the band at 500 nm is higher in the wild-

type and C57S mutant spectra than in spectra of the FMN

triplet state in aqueous solution (Sakai and Takahashi, 1996).

Therefore, a further intermediate might be present such as

a radical species absorbing in this spectral region. The time

trace of the LOV1-715 decay in the C57S mutant is dis-

played in Fig. 6 B (filled symbols) along with a bi-

exponential fit. The corresponding time constants are 2 ms

(with a relative amplitude of 20%) and 23 ms (80%). A

third exponential improves the fit only marginally. Hence at

least two species with different kinetics are involved that

cannot, however, be distinguished on the basis of their ab-

sorption spectra.

FIGURE 5 (Top) Absorption spectrum of the C57S mutant of LOV1.

(Bottom) Absorption difference spectra of the mutant at various delay times

after the laser flash. All difference bands decay in the mutant within 100 ms

and are assigned to the LOV1-715 intermediate.

FIGURE 6 Singular value decomposition and exponential fitting of the

time-resolved absorbance changes of the LOV1-C57S mutant. Panel A de-

picts the three most significant spectral components. The time trace of the

spectral component LOV1-715 is shown in panel B along with the fitted sum

of two exponentials. The resulting time constants are indicated by dashed

vertical lines (t1 ¼ 2 ms and t2 ¼ 23 ms, with relative amplitudes of 20% and

80% respectively).
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Because of the extremely long cycling time, it is difficult

to measure the fast kinetics of wild-type LOV1 with the

multichannel approach. Therefore, the decay kinetics of

wild-type and mutant LOV1 were also measured with the

monochromatic setup. As already mentioned, in wild-type

LOV1, the short-lived transient LOV1-715 decays into the

LOV1-390 intermediate. A representative trace of this decay

at 710 nm is depicted in Fig. 7 (top). A biexponential fit to

the trace yields time constants of 800 ns (80%) and 4 ms

(20%). This fast kinetics explains why in the multichannel

approach in Fig. 4 the absorption of LOV1-715 is not de-

tectable after 10 ms.

For the C57S mutant, the time trace of the absorbance

change at 650 nm is shown in Fig. 7 (bottom). The fitted

curve is a sum of two exponentials with time constants of 3

and 27 ms and relative amplitudes of 25 and 75%, re-

spectively. This result agrees well with the analysis of the

kinetic data obtained with the multichannel approach (see

Fig. 6 B).

Because the decay of LOV1-715 in the C57S mutant is

biexponential but only one spectral component is obtained

from SVD analysis, we have to postulate two species with

identical absorption spectra. The simplest model explaining

this kinetics involves separate decays due to the presence

of two different quenching channels and excludes any in-

terchange reactions. As the intermediate LOV1-715 has been

assigned to the triplet state of FMN, we deduce that

molecular oxygen could be a quencher when present close

to the chromophore in a certain fraction of the protein sam-

ple. The samples had not been prepared under anaerobic

conditions. Therefore, this hypothesis was tested by re-

peating the measurement in solutions saturated with pure

nitrogen. The decay of LOV1-715 could then be fitted

by a monoexponential function with t ¼ 27 ms (data not

shown). The fast (3 ms) component of aerated C57S mutant

solution had disappeared. A correlation between the amount

of oxygen dissolved and the relative amplitudes of the two

exponential components could not be investigated because

measurements in pure oxygen lead to a fast degeneration of

the sample. The finding that oxygen has a strong effect on the

decay kinetics of the short-lived intermediate LOV1-715 is

further support for the assignment of this species to the triplet

excited state of the chromophore. In contrast, the biexpo-

nential decay of wild-type LOV1-715 was not influenced by

oxygen. Experiments in nitrogen-saturated solution did not

show a significant change in the time constants of 800 ns and

4 ms, nor in their amplitudes.

Triplet states might also be affected by external heavy

atoms. Kinetic measurements in a xenon-saturated solution

of the C57S mutant did, however, show a monoexponential

decay of LOV1-715 with the same time constant of t ¼ 27

ms derived from the exclusion of oxygen. A significant

heavy atom effect of xenon on the decay was not observed.

DISCUSSION

We have presented the first detailed in vitro characterization

of a chromophore binding domain from an algal sensory

photoreceptor. The availability of crystal structure data on

this particular LOV1 domain facilitates the mechanistic in-

terpretation of the spectral data obtained (Fedorov et al.,

2003). The comparison with LOV2 domains shows

similarities but is limited by the fact that all previous work

has been performed on higher plants. The photocycle has

been studied for a LOV2 domain from oat Phot1 (Swartz

et al., 2001) and a structure is available for LOV2 from

fern phy3 (Crosson and Moffat, 2001, 2002).

The dark form LOV1-447 and the cysteine 57
protonation state

As already mentioned by Holzer et al. (2002), the absorption

spectrum of the dark form LOV1-447 and the fluorescence

properties are readily explained under the assumption that

FIGURE 7 Decay kinetics of the intermediate LOV1-715 obtained by

monitoring single wavelengths after excitation with a 446-nm laser pulse.

Solid lines indicate a biexponential fit. (Top) Wild-type LOV1-715 decay

observed at 710 nm yielding time constants of t1 ¼ 800 ns (80%) and t2 ¼ 4

ms (20%). (Bottom) C57S mutant observed at 650 nm with decay time

constants of t1 ¼ 3 ms (25%) and t2 ¼ 27 ms (75%).

Phot-LOV1 from Chlamydomonas 1197

Biophysical Journal 84(2) 1192–1201



the Cys-57 is protonated and interacts only weakly with the

FMN. This is in contrast to Swartz et al. (2001), who argued

in favor of a thiolate in LOV2 from oat Phot1. Our arguments

are the following:

1. The vibrational fine structure in the absorption spectra of

flavoproteins is an indication for a hydrophobic envi-

ronment of the FMN chromophore (Heelis, 1982). Miller

et al. (1990) generated a triple mutant of the mercuric ion

reductase where three of the four essential cysteines were

replaced by alanine. Only the cysteine in the C(4a)

region of the FMN (the one forming the thiol adduct)

was retained. This mutant shows a fine structured

absorption at 470 nm only when the cysteine is

protonated. The position of the relevant cysteine thiol

group with respect to the FMN is not identical in

mercuric ion reductase and Phot1 LOV1 (Fedorov et al.,

2003), but the protonation state should at least have some

influence on the LOV domain spectra.

2. In most FMN-containing proteins, a negative charge in

form of a thiolate in the environment of the FMN C(4a)

induces charge transfer properties as seen from the ad-

ditional absorption in the range between 500 and 600 nm

(Miller et al., 1990; Williams, 1992). Such an absorption

has neither been seen in the LOV1 spectrum of the C.
reinhardtii Phot1 (see Fig. 1) nor in any other spectrum

of a Phot-LOV domain.

3. Swartz et al. (2001) argued for a thiolate mainly on the

basis of the increased fluorescence of the C39S and

C39A mutants relative to wild-type LOV2 (factor 1.5–

1.8). The observed small increase in fluorescence be-

tween pH 2.5 and 3 was interpreted as a protonation

of the reactive Cys-39 at this acidic pH. In our un-

derstanding, a lower fluorescence quantum efficiency

in the wild-type is due to a promotion of intersystem

crossing by the sulfur and not an effect of the negative

charge (Holzer et al., 2002; Song, 1971). In the above-

mentioned mercuric ion reductase mutant, deprotonation

of the retained Cys-140, which directly interacts with

FMN C(4a), leads to a complete loss of fluorescence

(Miller et al., 1990).

4. FT-IR experiments on this LOV1 domain provide direct

evidence for a protonated Cys-57 (Ataka et al., 2003). In

the light of these arguments, we do not consider that

Cys-57 in the algal LOV1 is deprotonated in the dark

form LOV1-447. This conclusion is of importance for

the subsequent discussion of the reaction pathway after

light excitation.

The photocycle of LOV1

The time-resolved observations collected so far for this algal

LOV1 domain can be understood within the framework of

the reaction scheme presented in Fig. 8.

Photoexcitation of the dark form LOV1-447 produces the

excited singlet state of the FMN. Measurements of the

fluorescence lifetime yield a decay time of the excited state

tf ¼ 2.9 ns (Holzer et al., 2002). It should be noted that the

observed decay rate of the fluorescence represents a sum of

rates of all the contributing decay processes. The true decay

time of the fluorescence, i.e., the radiative decay time, can be

calculated to tr ¼ 17 ns, taking into account a fluorescence

quantum yield of Ff ¼ 0.17 (Holzer et al., 2002). The excited

singlet state can alternatively decay via intersystem crossing

(ISC) into the triplet state LOV1-715. In the case that internal

conversion is negligible, a quantum yield for intersystem

crossing Fisc ¼ 0.83 leads to the decay time tisc ¼ 3.5 ns.

In the C57S mutant, the triplet state LOV1-715 cannot

proceed to the LOV1-390 intermediate because it lacks the

reactive thiol group. Instead, it returns to the dark form with

time constants of 3 ms and 27 ms, indicating the presence

of two subspecies with identical spectra. The disappearance

of the 3 ms subspecies after removal of oxygen may be

attributed to a situation where only in a certain fraction of

the protein sample oxygen is present as quencher in the vicin-

ity of the chromophore. This fact and the similarity of the

transient spectrum to that of triplet FMN support our

conclusion that LOV1-715 resembles the triplet state of

FMN in LOV1. In the absence of oxygen, the intrinsic time

constant of 27 ms for the lifetime of the triplet state is

observed.

FIGURE 8 Photocycle of wild-type LOV1 with the assigned reaction

mechanism. LOV1-447 corresponds to the dark form, LOV1-715 to the

excited triplet state of FMN, and LOV1-390 to a flavin-cysteine adduct.
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In wild-type LOV1, the decay of LOV1-715 is faster and

again biexponential but oxygen-independent (ta ¼ 800 ns,

80%; tb ¼ 4 ms, 20%). Therefore, two additional decay

channels in the wild-type form must exist, neither of which

leads back to the dark form. This can be seen in Fig. 4,

where no recovery of LOV1-447 is observed within the first

10 ms after excitation. In support of this statement, an

overall quantum yield of 0.82 for the LOV1-390 formation

has been determined at 208C for this LOV1-domain (A.

Losi, Max-Planck-Institut fuer Strahlenchemie, personal

communication, 2002). Taking into account a fluorescence

quantum yield of Ff ¼ 0.17 (Holzer et al., 2002), the

conclusion can be drawn that LOV1-715 almost quantita-

tively reacts to LOV1-390. This means that the competing

quenching mechanisms leading to LOV1-447 observed in

the C57S mutant do not significantly contribute to the wild-

type reaction. Correspondingly, an increase of the wild-type

rate constants by an external heavy atom effect is not

observed.

The two time constants of wild-type LOV1-715 decay

indicate the presence of two subspecies, LOV1-715a and

LOV1-715b. The simplest interpretation would be a consec-

utive formation of both species. In that case, the fast time

constant of 800 ns would have to be assigned to the reaction

from the triplet state LOV1-715a to LOV1-715b and the time

constant of 4 ms is the subsequent reaction to LOV1-390.

However, a triplet species is still observed 1 ms after ex-

citation (see Fig. 4). That observation is inconsistent with

a fast decay of LOV1-715a. Moreover, no conceivable

ground state intermediate would show significant absorption

at the monitored wavelength of 710 nm (Massey and Palmer,

1966; Nanni et al., 1981). Therefore, the possibility of

a consecutive formation can be excluded. Instead, both

subspecies must be formed in a parallel reaction and can be

assigned to triplet species with similar spectra. According to

this scheme, LOV1-715a decays with the time constant of

800 ns into LOV1-390. LOV1-715b decays with the time

constant of 4 ms either into LOV1-715a or directly into

LOV1-390 (see Fig. 8). These two reaction pathways of

LOV1-715b cannot be distinguished kinetically. Both sub-

species result in LOV1-390 formation.

Inasmuch as both subspecies are triplet states of the FMN

chromophore, the different reactivity may be caused by

a different interaction of the FMN with the protein en-

vironment. Indeed, crystal structure analysis provides evi-

dence for two conformations of the dark form (Fedorov et al.,

unpublished). The conformations differ from each other in

the distance from the reactive cysteine to the C(4a) po-

sition of the FMN. This distance is likely to have an in-

fluence on the time constant of the adduct formation.

According to the proposed reaction mechanism, quantum

efficiencies may be calculated from the competition between

the two observed time constants ta ¼ 800 ns and tb ¼ 4 ms,

and the 27 ms time constant tint for the intrinsic lifetime of

the triplet state with the formalism:

Fi ¼
ki

ki þ kint

¼ 1=ti

1=ti þ 1=tint

; where i ¼ a; b: (5)

This leads to Fa ¼ 0.97 for the decay of LOV1-715a and

Fb ¼ 0.87 for the decay of LOV1-715b. Taking into account

the ratio of LOV1-715a to LOV1-715b, an averaged

quantum efficiency of 0.95 is calculated for the reaction

from LOV1-715 to LOV1-390. This value is in agreement

with the earlier conclusion that the triplet state almost

quantitatively reacts to LOV1-390. The overall quantum

efficiency for LOV-390 formation in C. reinhardtii LOV1

(0.82) is significantly higher than those determined in LOV1

(0.05) and LOV2 (0.44) from A. sativa (Salomon et al.,

2000).

Swartz et al. (2001) suggested for oat LOV2 that

the primary mechanistic step in LOV-390 formation is the

protonation of the flavin N(5) position through a proton-

donating group in the protein. The resulting C(4a) carboca-

tion is attacked by the cysteine thiolate. Such a carbocation

should have a red-shifted absorption (Nanni et al., 1981),

which has not been observed either for LOV1 or for LOV2.

More important, a proton-donating amino acid residue in

the vicinity of the chromophore is neither present in

C. reinhardtii LOV1 (Fedorov et al., 2003) nor in A.
capillus-veneris LOV2 (Crosson and Moffat, 2001). There-

fore, we favor a concerted mechanism similar to the one

hypothesized for the ground state reaction of mercuric ion

reductase ACAA mutant (Miller et al., 1990). Alternatively,

a transfer of a hydrogen atom from the thiol group to the

triplet state N(5) position and a fast recombination of the

resulting radicals is conceivable (Neiß and Saalfrank, 2003).

As a result of the reaction, the planar conformation of the

FMN is changed to a sp3 hybridization of C(4a) in LOV1-

390. This geometry of the chromophore is likely to be

constrained and therefore facilitates the thermal back re-

action to LOV1-447.

With the decay of LOV1-390, the adduct bonds (C(4a)-S

and N(5)-H) are cleaved and the dark form is recovered in

a pH-dependent reaction (see Fig. 2). This observation may

be attributed to base catalysis involving an acid-base pair

with a pKa between 5 and 6. However, there are no

protonatable amino acid side chains in the chromophore

binding pocket (Fedorov et al., 2003). As has been proposed

by Swartz et al. (2001), base catalysis may proceed via

a hydrogen bonding network between base, chromophore,

and intraproteineous water molecules. His-20 and His-55 of

the LOV1 domain are possible candidates with a distance of

14 Å to the FMN. Taking into consideration the crystal

structure data, a second interpretation of the kinetics is

conceivable (Fedorov et al., 2003). The chromophore FMN

itself may be protonated at the phosphate group that exhibits

a pKa of 6.2 in aqueous solution (Bidwell et al., 1986). The

phosphate group is in direct contact via hydrogen bonding

with Arg-58 and Arg-74, which might cause a shift of the

pKa value. Moreover, the influence of the sodium chloride
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concentration on the time constants at an acidic pH suggests

that the titratable group is located at the surface of the protein

(see Fig. 2). If the phosphate is protonated, the interactions

with Arg-58 become unfavorable and Arg-58 will stay closer

to the flavin ring and may thereby stabilize the bond between

Cys-57 and C(4a) (Fedorov et al., 2003). In the LOV1-390

intermediate, this may lead to different time constants of the

flavin-cysteine bond cleavage.

The presence of two LOV domains in Phot blue-light

receptors raises the question of the difference in property and

function of LOV1 and LOV2. The photocycle of LOV1

domains has not been investigated up to now, because

reported low quantum yields in comparison to LOV2 in A.
sativa implicated only a minor contribution to the overall

signal reception (Salomon et al., 2000). In contrast, we have

shown that the LOV1 domain is a highly efficient pho-

tochemical transducer and therefore can play, at least in

algal Phot1 receptors, an important role in the early steps

of signaling. Nevertheless, the interaction between the two

LOV domains and the downstream processes have yet to be

resolved by concomitant spectroscopic and structural studies

of larger segments of the Phot receptor proteins.

APPENDIX: MODEL FOR A THERMALLY
AND PHOTOCHEMICALLY
REVERSIBLE PHOTOREACTION

We consider a reaction system in which a species 1 (the dark form) is

photochemically converted into an intermediate species 2. This intermediate

can return to the dark form either thermally or photochemically. This can be

modeled by the following differential equation for the relative population

x ¼ c/c0, where c is the concentration of intermediate and c0 is the initial

concentration of the dark form:

@x

@t
¼ �ðk þ a2FÞx þ a1Fð1 � xÞ:

In this expression, F is the photon flux and k the rate constant of the

spontaneous (thermal) back reaction. The coefficient a1 is related to the

extinction coefficient e1(l) of species 1, the quantum yield of decay to the

intermediate F1!2 and the normalized quantum emission spectrum of the

light source r(l) by

a1 ¼ F1!2

ð
e1ðlÞrðlÞdl

and a2 is defined accordingly with the extinction coefficient e2(l) of species

2 and the quantum yield F2!1 of the reverse reaction. The relative pop-

ulation xs of the photostationary state is given by

xs ¼
a1F

k þ ða1 þ a2ÞF
:

The absorbance AF9 of the sample in the photostationary state at a probe

wavelength l9 can be expressed in terms of this relative population by

AF9 ¼ c0xse29þ c0ð1 � xsÞe19;

with e29 ¼ e2(l9) and e19 ¼ e1(l9). This can be rearranged to

DA9 ¼ A09� AF9 ¼ c0fe19� e29g
a1F

k þ ða1 þ a2ÞF
;

where A09 is the absorbance of the sample without photolytic irradiation. The

relative change in absorbance at a probe wavelength l9 is therefore

DA9

A09
¼ e19� e29

e19

a1F

k þ ða1 þ a2ÞF
;

defining a of Eq. 4 as

a ¼ k

a1 þ a2

:

Extrapolation to infinite photolytic light intensity yields the relation

R ¼ lim
F!‘

DA9

A09

� �
¼ 1 � e29=e19

1 þ a2=a1

:

Because ei9 and ai are both positive quantities, the value of R is bound by

R # 1. The upper limit R ¼ 1 is obtained if both conditions e29 ¼ 0 (i.e., no

absorption of the photoproduct) and a2 ¼ 0 (i.e., no photochemical back

reaction) are fulfilled. A value of R\ 1, on the other hand, provides limits

for e29 or a2, namely

0 #
e29

e19
# 1 � R;

which reaches the upper limit for a2 ¼ 0, and

0 #
a2

a1

#
1

R
� 1;

where the upper limit corresponds to the case e29 ¼ 0. The corresponding

experiment has been described in the results section. Extrapolation to infinite

light intensities reduced the initial absorbance of A0(475 nm) ¼ 0.37 to

a limit of AF(475 nm) ¼ 0.06, i.e., R ¼ 0.84. This leads to the following

ranges for the ratios of the coefficients ei9 and ai:

0 #
e29

e19
# 0:16; 0 #

a2

a1

# 0:19:

Hence, if no photochemical back reaction occurs, the observed photosta-

tionary absorption requires e29 ¼ 0.16 e19 at 475 nm. The spectrum of the

intermediate presented in Fig. 1 shows, however, a much lower extinction

coefficient e29 # 0.06 e19. (It is noted that there is some arbitrariness in the

SVD reconstruction of this spectrum.) If we accept this lower limit for e29,
the range of a2/a1 is reduced to

0:12 #
a2

a1

# 0:19:

Hence there is evidence for a photoinduced back reaction of the long-lived

intermediate to the dark form.
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