000027208 001__ 27208 000027208 005__ 20240619083353.0 000027208 017__ $$aThis version is available at the following Publisher URL: http://pre.aps.org 000027208 0247_ $$2DOI$$a10.1103/PhysRevE.63.021406 000027208 0247_ $$2WOS$$aWOS:000167022300044 000027208 0247_ $$2Handle$$a2128/1604 000027208 037__ $$aPreJuSER-27208 000027208 041__ $$aeng 000027208 082__ $$a530 000027208 084__ $$2WoS$$aPhysics, Fluids & Plasmas 000027208 084__ $$2WoS$$aPhysics, Mathematical 000027208 1001_ $$0P:(DE-Juel1)130616$$aDhont, J. K. G.$$b0$$uFZJ 000027208 245__ $$aSuperposition rheology 000027208 260__ $$aCollege Park, Md.$$bAPS$$c2001 000027208 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2001-01-26 000027208 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2001-01-01 000027208 300__ $$a021406 000027208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000027208 3367_ $$2DataCite$$aOutput Types/Journal article 000027208 3367_ $$00$$2EndNote$$aJournal Article 000027208 3367_ $$2BibTeX$$aARTICLE 000027208 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000027208 3367_ $$2DRIVER$$aarticle 000027208 440_0 $$04924$$aPhysical Review E$$v63$$x1539-3755$$y2 000027208 500__ $$aRecord converted from VDB: 12.11.2012 000027208 520__ $$aThe interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response Functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure. 000027208 536__ $$0G:(DE-Juel1)FUEK53$$2G:(DE-HGF)$$aPolymere, Membranen und komplexe Flüssigkeiten$$c23.30.0$$x0 000027208 542__ $$2Crossref$$i2001-01-26$$uhttp://link.aps.org/licenses/aps-default-license 000027208 588__ $$aDataset connected to Web of Science 000027208 650_7 $$2WoSType$$aJ 000027208 7001_ $$0P:(DE-HGF)0$$aWagner, N. J.$$b1 000027208 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.63.021406$$bAmerican Physical Society (APS)$$d2001-01-26$$n2$$p021406$$tPhysical Review E$$v63$$x1063-651X$$y2001 000027208 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.63.021406$$gVol. 63, p. 021406$$n2$$p021406$$q63<021406$$tPhysical review / E$$v63$$x1063-651X$$y2001 000027208 8564_ $$uhttps://juser.fz-juelich.de/record/27208/files/202.pdf$$yOpenAccess 000027208 8564_ $$uhttps://juser.fz-juelich.de/record/27208/files/202.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000027208 8564_ $$uhttps://juser.fz-juelich.de/record/27208/files/202.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000027208 8564_ $$uhttps://juser.fz-juelich.de/record/27208/files/202.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000027208 909CO $$ooai:juser.fz-juelich.de:27208$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000027208 9131_ $$0G:(DE-Juel1)FUEK53$$bStruktur der Materie und Materialforschung$$k23.30.0$$lFestkörperforschung$$vPolymere, Membranen und komplexe Flüssigkeiten$$x0 000027208 9141_ $$y2001 000027208 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000027208 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000027208 9201_ $$0I:(DE-Juel1)VDB36$$d31.12.2003$$gIFF$$kIFF-WM$$lWeiche Materie$$x0 000027208 970__ $$aVDB:(DE-Juel1)202 000027208 9801_ $$aFullTexts 000027208 980__ $$aVDB 000027208 980__ $$aJUWEL 000027208 980__ $$aConvertedRecord 000027208 980__ $$ajournal 000027208 980__ $$aI:(DE-Juel1)ICS-3-20110106 000027208 980__ $$aUNRESTRICTED 000027208 980__ $$aFullTexts 000027208 981__ $$aI:(DE-Juel1)ICS-3-20110106 000027208 999C5 $$1J. Vermant$$2Crossref$$oJ. Vermant 1990$$y1990 000027208 999C5 $$1R.I. Tanner$$2Crossref$$9-- missing cx lookup --$$a10.1122/1.549104$$p155 -$$tTrans. Soc. Rheol.$$v12$$y1968 000027208 999C5 $$1S. Hess$$2Crossref$$9-- missing cx lookup --$$a10.1016/0378-4371(77)90017-6$$p273 -$$tPhysica A$$v87$$y1977 000027208 999C5 $$1J.M. Deutch$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1675379$$p3547 -$$tJ. Chem. Phys.$$v54$$y1971 000027208 999C5 $$1T.J. Murphy$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1678535$$p2098 -$$tJ. Chem. Phys.$$v57$$y1972 000027208 999C5 $$1J.K.G. Dhont$$2Crossref$$oJ.K.G. Dhont An Introduction to Dynamics of Colloids 1996$$tAn Introduction to Dynamics of Colloids$$y1996 000027208 999C5 $$1G.K. Batchelor$$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112070000745$$p545 -$$tJ. Fluid Mech.$$v41$$y1970 000027208 999C5 $$1G.K. Batchelor$$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112077001062$$p97 -$$tJ. Fluid Mech.$$v83$$y1977 000027208 999C5 $$1H.E. Stanley$$2Crossref$$oH.E. Stanley Introduction to Phase Transitions and Critical Phenomena 1971$$tIntroduction to Phase Transitions and Critical Phenomena$$y1971 000027208 999C5 $$1J.K.G. Dhont$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.470335$$p7072 -$$tJ. Chem. Phys.$$v103$$y1995 000027208 999C5 $$1J.K.G. Dhont$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.58.7710$$p7710 -$$tPhys. Rev. E$$v58$$y1998 000027208 999C5 $$1G.K. Batchelor$$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112072002927$$p375 -$$tJ. Fluid Mech.$$v56$$y1972 000027208 999C5 $$1I. Bodnár$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.5304$$p5304 -$$tPhys. Rev. Lett.$$v77$$y1996 000027208 999C5 $$1Z. Laufer$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01520817$$p641 -$$tRheol. Acta$$v14$$y1975 000027208 999C5 $$1J. Blawzdziewicz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.48.4632$$p4632 -$$tPhys. Rev. E$$v48$$y1993 000027208 999C5 $$1J.K.G. Dhont$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.58.4783$$p4783 -$$tPhys. Rev. E$$v58$$y1998