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Semiflexible polymer in a uniform force field in two dimensions
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The conformational properties of a semiflexible polymer chain, anchored at one end in a uniform force field,
are studied in a simple two-dimensional model. Recursion relations are derived for the partition function and
then iterated numerically. We calculate the angular fluctuations of the polymer about the direction of the force
field and the average polymer configuration as functions of the bending rigidity, chain length, chain orientation
at the anchoring point, and field strength.
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I. INTRODUCTION tion [27], are involved, as will become clear.
The two-dimensional model of a semiflexible polymer is

The influence of external forces on the conformationaldescribed in Sec. Il. Recursion relations for the partition
properties of polymers has been studied extensively in receffiginction are derived in Sec. lll. In Sec. IV we calculate the
years. Polymers stretched by attached magnetic Hdadsy ~ angular fluctuations of the polymer segments about the di-
laser tweezergls], and by Optica' f|ber§4] and po'ymers in rection of the applled force, and in Sec. V the |Ongitudina|
flow fields [5—8] have received much of the attentipg]. ~ €xtension due to the force. In Sec. VI we vary the angle
The study of polymer deformation in elongational flow goesbetween the polymer and the force field at the anchoring
back to the prediction of a coil-stretch transitifi0,11 and ~ Point and see how this affects the mean polymer configura-
early birefringence and light scattering experimeitg,13.  tion. Finally, in Sec. VI the case of a polymer pulled at its
Experimental techniquei®,14—16 that allow direct visual- ~ends is briefly considered.
ization of polymer conformations in simple flows have given
this field a new perspective. Here the main idea is to use Il. THE MODEL
fluorescently labeled DNA molecules, which are long
enough so that their conformations can be resolved in an In the wormlike chain model of a semiflexible polymer,
Optica| microscope. the Hamiltonian is giVen bY28]

In contrast to typical synthetic polymers, DNA chains are
semiflexible, with a persistence length of about 80 nm. For
contour lengths of a few micrometers or more these chains
behave as flexible polymers, in the absence of external

forces. In the case of highly stretched DNA chains the bendyneret is a unit tangent vector anslis the arclength. We
ing rigidity has been shown to play an important role .onsiger a discrete version of this model in two spatial di-

L
H0=%fo ds(ag)?, 1)

[17,18. ) o mensions, with Hamiltonian
The force-extension curve of a semiflexible polymer
pulled at both ends is derived in Rgfl8]. Predicting the N
deformation of a polymer in a flow field is considerably HoZJE (6,—6,_1)2. )
more complicated for two reasons. First, there is a direct i=1

hydrodynamic interaction between different polymer seg-
ments[19-21]. Second, even if the conformation-dependent,The polymer chain consists &f+ 1 line segments of fixed
fluctuating drag on each bead is approximated by a frictiorunit length. Theith segment forms an angi with the x
term proportional to the local flow velocityfree-draining”  axis. One end of the polymer is anchored at the origin, and
approximation, the force on each bead depends on the posithe orientation angl@, of the first segment is also assumed
tions of all other beads. Thus, most theoretical studies havg be fixed.
relied on computer simulation5,19-23 and/or consider To include a uniform force fieldF, in the x direction, we
flexible chaing19,23-24. add the terms

In this paper we study the conformational properties of a
semiflexible chain, anchored at one end, in two dimensions N N
in a constant force field. In our model the polymer partition Hi=—Fo>, Xi=—Fo>, >, coso,
function is determined by simple recursion relations, which =1 i=1j=1
are easily iterated numerically. Very little computing time is N
required, and there is no statistical error in the results, but = —Fo> (N+1—i)cosb, 3
some other approximations, such as the Villain approxima- =1
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gravitational, or uniform flow field. The partition function  Zn(hz, ...
corresponding to Eqg2) and(3) is given by

N
zN=f déy- - f deNexp[ — > [K(6,—6_,)?
— — i=1

to the Hamiltonian. The external field could be an electric,
0
hy) = f dé;-- f don

X ex E [—K(6—6_1)%— L6}
i=1

- . +h; 9i]} , (8)
+L(N+1—|)cosei]], (4)
~ where
whereK=J/kT andL=Fy/kT.
A nice feature of this model is that it can be solved ex- Li=(N+1-i)L, 9
actly in the absence of an external field, i.e., for 0. The
mean square end-to-end distance is given by as follows from Eq.(4). The h; are auxiliary variables that
will be used in calculating thermal averages.
1—e ¢ The partition function(8) may be evaluated by straight-
(RA)=N+1+ e N——% (5  forward integration ove#, ,6,, . ... Thefirst k—1 integra-
e er-1 tions contribute

with the persistence lengti§=4K. For N>&>1, (R2)
=(1+2¢&)N, corresponding to an ideal flexible chain with Qk(ek)—f do,-- f do,_,
Kuhn length 1+ 2¢. In the limit N<¢ with &1, (R2)
=(N+1)?, corresponding to a rigid rod.

To obtain a more tractable model, we make the Villain Xexp[z [—K(6— 6 _1)>—L;62+h;6;]
approximation27]

oo =qex] — v+ 2B8k0i]. (10
exd Lcosg]— exd — L(6—2mm)? 6
" ] m;w ik ] © whereqy is a constant, independent @f. Equation(10) and

the recursive property
in Eq. (4). It was originally introduced in studies of the two-

dimensionalk-y model and the roughening transition, where 0 o 5 5

the Hamiltonians have a similar form. The approximation Qk(ak):J d Oy 1exd — K( 60— Ok—1)"— L
preserves the periodicity of the cosine function but leads to o

more manageable Gaussian integrals. An irrelevant normal- + 0 QY 1 (H—1) (12)

ization factor on the right-hand side has been omitted. The
constantL may be determined by expanding both sides Ofimpl
Eq. (6) in Fourier series and equating the lowest two Fourier

coefficients. This yield$27] - 112 2
—( exp[ g, (12
lo(D) | Yk-1TK Yk-1tK ’
L=|41 n— , (7)

(L) where

wherel, andl, are modified Bessel functions. y1=K+Lj, (13
Replacing=,_ _.. in Eq. (6) by Emmm:afm defines a fur-

ther approximation, which may be systematically improved Ky YL k=2 N (14)
by increasingm,,,,. In the finite m,,, approximation, con- L e

figurations with up tam,,,xl00ps about the origin receive the
same statistical weight as fan,,,=«, but the statistical 1
weight of configurations with more tham,,,, loops is un- B1=Kby+ Ehl’ (15
derestimated.
IIl. RECURSION RELATIONS = KBy 1 =
. By=—>+zh, k=2,... N. (16)
’yk_1+ K 2
As a first approximation we neglect all but thre=0 term

in Eq. (6), replacinge’ ®s? by e 1%°. This is a good approxi- lterating Eq. (12) to obtain gy and using Z{
mation for sufficiently largeK and/orL. The corresponding =/d HNQﬁ(GN)=(w/yN)1’2exq,8ﬁ,/yN]qN, as follows from
partition function is Egs.(8) and(10), we obtain
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guishable. The same is true 083_,), (65_,), etc. The
(1 valuesN=100, 500, and 1000 are large enough so that the
angular fluctuations at the free end of the chain are indepen-
- ) ) ) dent of the chain length.
The partition function(17) is completely determined by the  \ye now examine thél dependence of the fluctuations. In
recursion relation$13)—(16) and theL; defined in Eq(9). Fig. 2 the quantit;&((ﬁﬁ,) is plotted as a function oi for
five different values oL/K. There is an obvious crossover
IV. ANGULAR FLUCTUATIONS from N-dependent tiN-independent behavior &sincreases.
We denote the approximate value Nfat the crossover by

We now derive the angular fluctuatiofig?) of the poly- .
mer chain in a constant force field from the partition function.Nmi“' According to Eq(18), Ny depends orK andL only

Zﬂ of Egs.(8) and(9). In this section we set the initial angle in the comblnat|orL/K_. Figure 3 showNp,, as a function
. . © ~ of L/K. The data are in excellent agreement with
0o and all of the auxiliary variablel; equal to zero. In this

case

_+ e
W Yn-1TK y1+K

Xexp[ﬁﬁ BR-1 .\ B2

Nmin~ (L/K) "3 L/K<1. (22)
K(6?)=f;(L/K,N) (18)
The power law(22) follows from the following argument.

depends orK andL only in the combinatiori./K. This fol-  For L/K<1 the recursion relatiol9) implies
lows from rescaling the angleg in the partition function
(8). A second consequence is that figin Egs.(15—(17) all K L
vanish. N 1+kAkR+O((L/K)2) (23

Using the definition(9) of L;, we write the recursion

relation (14) for v, in the form
, whereA, satisfies the recursion relation

w=K+L(N+1-k)— (19

K+ yk-1 .

£
According to Egs(9), (17), and(19) the angular fluctuations =
(6%)=—0aInZ}/dL; satisfy

2

2\ __ 2 _ _
<0k>_2('}’k+K)+ 'Yk+K <0k+1>1 K 1,...N—-1,
(20
> 1
<0N>:m- (21) L L L L L L L |O\
10° 10° 10 10 10’
LK

We have calculated?) by numerical iteration of Egs.
(13), (19), (20), and (21). The results fo./K=0.1 andN FIG. 3. Ny, as a function ofL/IK for K=1 (@), K
=100, 500, 1000 are shown in Fig. 1. For these three values 10 (O), K=100 (A), K=1000 (x). The straight line has
of N the results for #2) in Fig. 1 are practically indistin- slope—1/3.
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2
A 1+ (N+1—k)

k-1
AT

with A;=N. Since the factor multiplyingd,_, in Eq. (24)
approaches unity asincreasesAy~ N? for N>1. For fixed
L/K<1 andN small, the first term inyy, as given by Eg.
(23), is clearly the dominant term, angy=K/N. However,
the second term becomes increasingly importaniNais-

(29)

creases. It is reasonable to assume that a crossover to a dif-

ferentL/K dependence occurs when the second termyin

as given by Eq(23), becomes comparable with the first, i.e.,

NAy~N3~K/L for N~Ny,. This leads to Eq(22) and the
prediction yy~ yy_ ~K(L/K)™ for L/K<1, N>Nppn.

In the complementary regime/K>1 the recursion rela-
tion (19) implies

—KL 1 K O((K/L)? 25
=Kl t1l-50+ ((K/L)*) (25

for arbitraryN. Since this result is entirely independent\f
the largeN behavior has its onset at
Nmin~1,

L/K>1. (26)

We now derive exact analytic expressions for the fluctua

tions (6), (63_1), ...
chain. Reverse iteration of Eq19), beginning with yy,
leads to the continued fraction

KZ
KL e
K? K? K?
X IK+3L= 2K+4L— 2k+nNL @D

In the limit N—oo the continued fraction may be evaluated

with the help of Eq(9.1.73 in Ref.[29], yielding
vy |7t 2K
y.=K -1 =

J,(v)
HereJ,(2) is the standard Bessel function, a.mpKz) is its
derivative with respect ta. From Eq.(9.3.23 in Ref. [29]
and Eq.(27), we obtain

(28)

1/3

r'(2/3 ( L)1/3 L

ram |k Kb
Yo=K X L K L (29
R+1_Z’ R>1.

These limiting forms are consistent with the expressions fo

Y=~ YN, for small and large./K given in Eq.(25) and the
paragraph that precedes it.

From the result(28) for (62)=(2yy) ! in the largeN
limit, it is straightforward to calculaté6?_,), (62_,), ...
using Eqgs(19)—(21).

In Fig. 4, K(62)=K/(2y) is plotted as a function of
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FIG. 4. K(6%)=KI/(2yy) for a polymer in a constant force field
as a function ofL/K for N=10 (@), N=100 (O), and N
=1000 (A), together with the exact resy®8) for N—oo(x). The
straight lines have slopes1/3 and—1, respectively.

L/K for N=10, 100, 1000, and compared with the analytic
prediction(28) for N— o,

As stated in Sec. lll, then,,,=0 approximation is accu-
rate for sufficiently largeK and/orL. One can use the results
of this section to determine the domain of validity more pre-
cisely. The approximation, i.e., replacing abby 1— 362,

> 107 should be quite reliable if, say(ﬂ,%,>:(2yN)*l<(7r/4)2 or
at the end of an infinitely long ,, ~8/72~1. Computingyy by numerical iteration, one can

readily check whether this inequality is satisfied for particu-
lar values ofK, L, andN. According to Eqs(23), (29), and
(25), the inequalityyy>1 corresponds t&K>N for L/K
<1 and N<Np,, to K(L/K)¥*>1.4 for L/IK<1 and N
>Npin, and toL>1 for L/K>1 and arbitraryN.

V. LONGITUDINAL STRETCHING

For a polymer in a constant force field, one of the main
quantities of interest is the average extension in the flow
direction. According to a prediction of Marko and Siggia
[18],

wzl—CO(LKN)‘”Z,

N (30

with Co=1. This result was derived by approximating the
restoring force at positiosalong the chain with the thermo-
dynamic result for a polymer of lengthpulled at its ends.
Note, however, that a polymer in a flow field fluctuates most
strongly at the free end and not at all at the anchored end,
quite unlike a polymer pulled at its ends. The derivation also
assumes a boundary conditiéroséy)~LK2<1 at the end of
the chain, at odds with the exact res(#)~ (LK?)~ 2 in
Eqs. (21) and (29 for large K and N, where our discrete
model is equivalent to the continuum model of REI8].
One advantage of our approach is that it avoids these as-
sumptions and yields numerically exact results for the model
with partition function(8).

We have checked Eq30) for our model, using the rela-
tions
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FIG. 5. Average extensiofxy) of the chain in the direction of FIG. 6. Average extensiofxy) of the chain in the direction of

the force field as a function of the field strendthfor K=10, N the force field as a function of the field strendth The symbols

=100 (*); K=10, N=1000 (©); K=10, N=10000 (¢); K correspond to the same parameters as in Fig. 5. The straight line has
=100, N=1000 (A); K=100, N=10000 (); K=1000, N  gjope_1.
=10000 @). The straight line has slope 1/2.

In Fig. 6 numerical data for several bending rigidities,

N . ' . T

_ 1 o 0 chain lengths, and force fields are compared with this result.

<XN>—]§=:0 <C°5‘91>—2 ]2::0 (efite'), G The agreement is excellent. Thus, for a sufficiently strong

force field or a sufficiently small bending rigidity, the chain
00,... hi=+i,0,...) extension varies as ™!, just as for flexible chains with arbi-
(e*10)y= N . Tl = ) (32) traryL.
Z\(0,....,0

Here the numerator on the right side of E82) is the par- VI. MEAN POLYMER CONFIGURATION FOR  6,#0

tition function of Eqs.(8) and(17) with all of the auxiliary
fields set equal to zero except thgt=i. In the denominator
all of the auxiliary fields, includind; , vanish.

Calculating these partition functions recursively using
Egs.(13), (14), and(17), with theL,; defined by Eq(9), we
obtained the results for the extension shown in Fig. 5. Th
data for sufficiently largek do indeed confirm Eq30). F

In this section we consider polymer conformations with
the first segment fixed at a nonzero anglewith respect to
the direction of the force field. We make the Villain approxi-
mation and restrict the sum in E() to m=—1,0,1. In the
corresponding polymer partition function there is a separate

um ovem for each polymer segment. For a sufficiently stiff

polymer and/or a sufficiently strong force field, the confor-
our modelCy=0.23. , , mations of the chain are dominated by tb@mepotential

It is instructive to compare the chain lendthwith Nwin - minimum. In this case the separate sums may be replaced by

in the regime where EQ30) applies. ForK=1000 andN 5 gingle sum, leading to the simpler partition function
=10000(filled circular points in Fig. bthe six-decade in-

terval 10<LKN<1CP corresponds to 10°<L/K<10"4, 1

or [see Eq(22) and Fig. 3 to 20 000> N,,,,>200. Thus, the 5 = TN o f ”
inequality N>N,;, holds only for the last three decades of Zn(ha, o) m;1 460 | don
LKN.

There are deviations from the straight line in Fig. 5 for % K 2
smallerK and largerL. For L>K, the recursion relatiof.9) xexp 2 [=K(0i=6i-1)
implies

=(N+1-k)L (33 —Li(0i—2wm)2+ﬁi0i]}. (36
and

Here we have again introduced a set of auxiliary variables

N N N N
(Xn)= z (cosf;)=N— 1 2 (0»2):N— E E i h;, to be used in constructing thermal averages.
= ' 2= 410y Expanding @, —27m)? in powers of6, , one sees that the
(39 partition function(36) can be expressed as
The sum over the chain segments is easily carried out and 1
yields NG ,ﬁN):le e—4,,2m2(L1+...+LN)Zgl(ﬁl
InN B
(Xn)=N—=—— (39 +a4mmLy, ... hy+4mmly)  (37)
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FIG. 7. Average positiongx;),(y;) of a chain of lengthN
=100 with K=1, 6,==/3 (lower pane), and 6,=27/3 (upper
pane), with L=10"% (O), L=10"* (A), L=10"2 (x), andL
=10"! (@). The straight line indicates the tilt angts.

in terms of them=0 partition functionZR,(hl, ...,hy) de-
fined in Eq.(17). Since we know how to calculaﬁéﬁ, nu-
merically with the recursion relations of Sec. lll, we can also

calculateZ,, via Eq. (37). Using Egs.(9), (13)—(17), (37),
and the relations

k

k
(x)=2, <cosoj>=%2 (ei+e '), (39
j=0 j=0

X 18 .
(y=2 (sin)=5- > (ei—e"'), (39
j=0 j=0

Zn(0, ... hj==%i0,...)
Zn(0,...,0

(e*10y= : (40)

we have evaluated the average position ofjtiresegment of

the polymer chain for fixed,. Figures. 7—12 show how the

average position depends on the tilt angjg field strength

L, and bending rigidityK. In all of these figuresN=100.
Figures. 7 and 8 show the average polymer configuratio

in the x,y plane. As the field strength increases, the polyme

40

w
o |\ /

40 t

<yp>

<yp>

20

FIG. 8. Average positiongx;),(y;) of a chain of lengthN
=100 with K=10, 6y= /3 (lower panel, and 6,=27/3 (upper
pane), with L=10"° (O), L=10"% (A), L=10"% (%), andL
=10"! (@). The straight line indicates the tilt anghg.
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-3.1416 0 3.1416
0, (radians)

FIG. 9. Average transverse extensiy,) as a function off,
for N=100, K=10, and L=10"° (*¥), L=1075 (%), L
=102 (A),L=102 (O), L=10"1 (@).

is bent toward the field direction and is stretched longitudi-
nally. The elongation is more pronounced for smaller bend-
ing rigidities.

In Fig. 9 the transverse extension of the polymer as a
function of the tilt angle is shown in more detail. The curves
are sinusoidal for small field strengthsut for largerL bend
abruptly nearfy= = 7r, due to the instability of a polymer
directed against the force field. Since our model includes
fluctuations, the polymer “tunnels” between the two equiva-
lent free-energy minima, and there is no spontaneous sym-
metry breaking at,= .

Figure 10 shows the tranverse extension as a function of
the field strength for three differem}. For K=10, N=100,
andL <10 °, the effect of the force field is negligible. For
stronger force fields, there seems to be a regime where
(yn)~L™%.

The contour lengtlC, of the average configuratiofsee
Figs. 7 and 8is shown in Fig. 11. Again, the effect of the
force field is negligible forkK =10, N=100, andL<10"° .
Varying the tilt angle only affects the contour length near the
onset of the deformation due to the force field.

Finally, we have considered the anglebetween a line
fhrough the end points of the chain and the direction of the
force field. A weak force field deforms the polymer only

A
=
& n--——@;’i.%
10 | ﬁ q
o

8 00 %
X,

. <
)

1 I 1 I ! | I ! |

o
o
(B

FIG. 10. Average transverse extensign,) as a function of.
for N=100, K=10, and ,==/3 (@), 0,=27/3 (O), and 6,
=177/18 (A).
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FIG. 11. Contour lengttC, of the average configuration as a FIG. 13.K(62)=K/(27yy) for a polymer pulled at the ends as a
function of L for N=100, K=10, and 6,=7/180 (@), 6,  function ofL/K for N=10 (*), N=100 (A), N=1000 (©), and
=7/3 (O), and 6y=27/3 (L). N=10000 @), together with the exact resui#2) for N—oo(x).
The straight lines have slopesl/2 and—1, respectively.
slightly, and é varies linearly with the tilt angled,. For a
strong force field, on the other hanélyvaries abruptly a®, and(21), with Eq. (19) replaced by
approachesr, due to the instability mentioned above. The

behavior of § as a function ofL in Fig. 12 is qualitatively K4 L— K? 1)
similar to that of(yy) in Fig. 10. Yk K+ yk-1
VII. POLYMER PULLED AT ITS ENDS In the long chain limityy approaches the fixed point
Thus far we have considered an external force field that L)\2 12
acts on each monomer of the semiflexible polymer. With 7m=§+ 5 +KL (42)

only minor modifications the case of a constant force applied

at the ends of the polymer can also be studied. Anchoring Eq. (4).

one end at the origin at a fixed anglg, we apply a constant For largeK andN our discrete model is equivalent to the
force at the o’t\‘her end by replacing E(B) with Hi=  continuum model of Marko and Siggid8]. In this limit
—FoXn=—FoZj-,c0s6,. In the Villain approximation(6) Egs. (21) and (42 imply the same result¢?)=(4KL) 12
the partition function is again given by E®), but Eq.(9) is  for the angular fluctuations as in R¢L8].

replaced by ;=L. With this definition of theL; the partition In Fig. 13, K<9§1>: K/(27yy) is plotted as a function of
function may be calculated recursively, as in Sec. lll. FOr /K for N=10. 100. 1000. and 10000 and compared with
symmetric boundary conditions at the ends of the chain, i.ey o analytic prédicti(;rq42) f(,)r N oo

_00 and 6y b_oth fixed or both free to fluctuate, the calculation We have also calculated the mean configuration of a poly-
is also straightforward. mer pulled at its ends for fixed,>0 and fluctuatingd .

. For fixed 6,=0 and fluctuatingdy, 'the angular fluctua- Figure 14 shows the tranverse extension as a function of the
tions of the polymer segments are given by E3$), (20), force for three differentd,. For K=10, N=100, andL

A AR AR /OO N 102
1 QGmammm%
Sy Q%A
g Y
15l p? = -
N % 2 \%
© —2 [0 cumD comn cump oD % .%
10 F ~ £ A@ﬁ%
° R]
\ 10 5 o
10_3 L .\ AMMMMMMMA% ':%
. o \
']O 1 L 1 1 1 1 L L L L
10_8 10_5 10_2 1 I I 81 I I 5| I L 2| L
L 10 10 107 1
L
FIG. 12. Angleés between a line through the end points of the
chain and the direction of the force field as a function_Ldr N FIG. 14. Average transverse extensign,) of a polymer pulled
=100, K=10, and 6y,=m/180 (@), 6,=m/3 (O), and 6, at its ends as a function ofE for N=100, K=10, and 6,
=23 (A). =u/3 (@), 0p=27/3 (O), 6,=177/18 (A).
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<1073, the effect of the force is negligible. For stronger segments pointing in widely different directions but is accu-
forces there seems to be a regime wheyg)~L 2°. We  rate for sufficiently largek and/orL.
found quite similar behavior for a polymer in a uniform force  The singlem approximation can, of course, be improved
field, as shown in Fig. 10. at the cost of greater computing time. Retaining all the Vil-
lain sums leads to the partition function
VIIl. CONCLUDING REMARKS

. : : . zy(hy, ... R
For calculating the conformational properties of a semi- n(ha N)
flexible chain in a uniform force field our recursive approach * * ) 2 ) 2
has several advantages$) It requires very little computing = > . > edmmili e 4mmly
time, and(ii) it allows one to consider very long chains. For M===  MN=7F
a clearly defined model exact numerical results are obtained. XZﬂ(ﬁl+4wm1L1, Byt Armyly)

Thus, (iii) there is no statistical error, ari@d/) some of the
approximations in earlier theoretical work are avoided. Fi- (43

nally, (v) the recursion relations furnish some analytical in-

sight. We were able to obtain some exact results for thénstead of Eq(37). HereZy is them=0 partition function in
asymptotic behavior of long chains. While most previousEq. (17), which we know how to compute recursively. Usu-
studies have focused on the force-extension relation, we hawadly one is interested ik and L for which the angular dif-

also analyzed angular fluctuations. ferences between adjacent segments are small, certainly less

A disadvantage of the approach is the limitation to twothan 27. Then the sums on the right side of E43) may be
dimensions. However, many of the results probably apply, atestricted to the terms with-1<=m;<1, m;—1<sm,=m;
least qualitatively, to chains in three spatial dimensions. Fur-+1, etc. ComputingZy with no further approximations re-
thermore, the results are directly applicable to polymers congquires 3' evaluations o‘rzﬁ.
fined to two dimensions, for example, DNA electrostatically
bound to fluid lipid membrangs30].

The Villain approximation was used to obtain a tractable
model. It preserves the periodicity hand is no more un- Helpful discussions with R. Winkler and U. Seifert are
realistic than using a quadratic bending energy for arbitrangratefully acknowledged. T.W.B. thanks the Institut Fest-
angles or ignoring excluded volume. We presented resultkorperforschung, Forschungszentrurichy for hospitality
only for the singlem approximation withm,,,<1, which  and the Alexander von Humboldt Stiftung for financial
underestimates the statistical weight of configurations wittsupport.
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