001     275995
005     20240712101025.0
024 7 _ |2 doi
|a 10.5194/acp-15-5275-2015
024 7 _ |2 ISSN
|a 1680-7316
024 7 _ |2 ISSN
|a 1680-7324
024 7 _ |2 Handle
|a 2128/9408
024 7 _ |2 WOS
|a WOS:000355289100019
024 7 _ |a altmetric:21827614
|2 altmetric
037 _ _ |a FZJ-2015-06493
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Inness, A.
|b 0
|e Corresponding author
245 _ _ |a Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1449064195_15369
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Daily global analyses and 5-day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC) project using an extended version of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS) with respect to reactive gases and validates analysis fields of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of Measurements of Pollution in the Troposphere (MOPITT) CO columns is seen in the lower troposphere of the Northern Hemisphere (NH) extratropics during winter, and during the South African biomass-burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to the previous "coupled" model system of MACC.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
536 _ _ |0 G:(EU-Grant)633080
|a MACC-III - Monitoring Atmospheric Composition and Climate -III (633080)
|c 633080
|f H2020-Adhoc-2014-20
|x 1
536 _ _ |0 G:(EU-Grant)283576
|a MACC II - Monitoring Atmospheric Composition and Climate Interim Implementation (283576)
|c 283576
|f FP7-SPACE-2011-1
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Blechschmidt, A.-M.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bouarar, I.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Chabrillat, S.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Crepulja, M.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Engelen, R. J.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Eskes, H.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Flemming, J.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Gaudel, A.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Hendrick, F.
|b 9
700 1 _ |0 P:(DE-Juel1)151210
|a Huijnen, V.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Jones, L.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Kapsomenakis, J.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Katragkou, E.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Keppens, A.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Langerock, B.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a de Mazière, M.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Melas, D.
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Parrington, M.
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Peuch, V. H.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Razinger, M.
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Richter, A.
|b 21
700 1 _ |0 P:(DE-Juel1)6952
|a Schultz, Martin
|b 22
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Suttie, M.
|b 23
700 1 _ |0 P:(DE-HGF)0
|a Thouret, V.
|b 24
700 1 _ |0 P:(DE-HGF)0
|a Vrekoussis, M.
|b 25
700 1 _ |0 P:(DE-HGF)0
|a Wagner, A.
|b 26
700 1 _ |0 P:(DE-HGF)0
|a Zerefos, C.
|b 27
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-15-5275-2015
|g Vol. 15, no. 9, p. 5275 - 5303
|n 9
|p 5275 - 5303
|t Atmospheric chemistry and physics
|v 15
|x 1680-7324
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/275995/files/acp-15-5275-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/275995/files/acp-15-5275-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/275995/files/acp-15-5275-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/275995/files/acp-15-5275-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/275995/files/acp-15-5275-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/275995/files/acp-15-5275-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:275995
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)6952
|a Forschungszentrum Jülich GmbH
|b 22
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)145370
|a External Institute
|b 26
|k Extern
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21