Home > Workflow collections > Public records > Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber > print |
001 | 276104 | ||
005 | 20240712101040.0 | ||
024 | 7 | _ | |2 doi |a 10.5194/acp-15-10777-2015 |
024 | 7 | _ | |2 ISSN |a 1680-7316 |
024 | 7 | _ | |2 ISSN |a 1680-7324 |
024 | 7 | _ | |2 Handle |a 2128/9419 |
024 | 7 | _ | |2 WOS |a WOS:000362457400028 |
037 | _ | _ | |a FZJ-2015-06582 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Roldin, P. |b 0 |e Corresponding author |
245 | _ | _ | |a Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber |
260 | _ | _ | |a Katlenburg-Lindau |b EGU |c 2015 |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1447750311_7443 |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
520 | _ | _ | |a We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs. |
536 | _ | _ | |0 G:(DE-HGF)POF3-243 |a 243 - Tropospheric trace substances and their transformation processes (POF3-243) |c POF3-243 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Liao, L. |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Mogensen, D. |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)7136 |a Dal Maso, Miikka |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Rusanen, A. |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kerminen, V.-M. |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)16346 |a Mentel, T. F. |b 6 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)129421 |a Wildt, J. |b 7 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)129345 |a Kleist, E. |b 8 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)4528 |a Kiendler-Scharr, A. |b 9 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)5344 |a Tillmann, R. |b 10 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)144056 |a Ehn, M. |b 11 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kulmala, M. |b 12 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Boy, M. |b 13 |
773 | _ | _ | |0 PERI:(DE-600)2069847-1 |a 10.5194/acp-15-10777-2015 |g Vol. 15, no. 18, p. 10777 - 10798 |n 18 |p 10777 - 10798 |t Atmospheric chemistry and physics |v 15 |x 1680-7324 |y 2015 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276104/files/acp-15-10777-2015.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276104/files/acp-15-10777-2015.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276104/files/acp-15-10777-2015.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276104/files/acp-15-10777-2015.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276104/files/acp-15-10777-2015.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/276104/files/acp-15-10777-2015.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:276104 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)16346 |a Forschungszentrum Jülich GmbH |b 6 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129421 |a Forschungszentrum Jülich GmbH |b 7 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129345 |a Forschungszentrum Jülich GmbH |b 8 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)4528 |a Forschungszentrum Jülich GmbH |b 9 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)5344 |a Forschungszentrum Jülich GmbH |b 10 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-243 |1 G:(DE-HGF)POF3-240 |2 G:(DE-HGF)POF3-200 |a DE-HGF |l Atmosphäre und Klima |v Tropospheric trace substances and their transformation processes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |a Creative Commons Attribution CC BY 3.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)9905 |2 StatID |a IF >= 5 |b ATMOS CHEM PHYS : 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b ATMOS CHEM PHYS : 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-8-20101013 |k IEK-8 |l Troposphäre |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 1 |
980 | 1 | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-8-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
981 | _ | _ | |a I:(DE-Juel1)ICE-3-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|