000276128 001__ 276128 000276128 005__ 20240712084528.0 000276128 020__ $$a978-3-95806-096-8 000276128 0247_ $$2Handle$$a2128/9429 000276128 0247_ $$2URN$$aurn:nbn:de:0001-2016022919 000276128 0247_ $$2ISSN$$a1866-1793 000276128 037__ $$aFZJ-2015-06605 000276128 041__ $$aEnglish 000276128 1001_ $$0P:(DE-Juel1)130277$$aNuys, Maurice René$$b0$$eCorresponding author$$gmale$$ufzj 000276128 245__ $$aCharacterization & Modification of Copper and Iron Oxide Nanoparticles for Application as Absorber Material in Silicon based Thin Film Solar Cells$$f - 2015-01-13 000276128 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015 000276128 300__ $$aXII, 123 S. 000276128 3367_ $$2DataCite$$aOutput Types/Dissertation 000276128 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000276128 3367_ $$2ORCID$$aDISSERTATION 000276128 3367_ $$2BibTeX$$aPHDTHESIS 000276128 3367_ $$02$$2EndNote$$aThesis 000276128 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1599632150_19835 000276128 3367_ $$2DRIVER$$adoctoralThesis 000276128 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v291 000276128 502__ $$aDissertation, RWTH Aachen, 2015$$bDissertation$$cRWTH Aachen$$d2015 000276128 520__ $$aThe present thesis deals with the characterization and modication of semiconductingcopper oxide (CuO, Cu$_{2}$O) and iron oxide ($\gamma$-Fe$_{2}$O$_{3}$, $\alpha$-Fe$_{2}$O$_{3}$) nanoparticles, which provide a basis for an innovative solar cell concept involving nanoparticles composed of almost unlimitedly available elements as absorber material in thin film solar cells. This approach is promising to meet the requirements of increasing the production capacity and lowering the production costs if the nanoparticles exhibit superior properties compared to corresponding thin films. Therefore, the goal of this thesis is to demonstrate the high quality of semiconducting nanoparticles that can be achieved by proper treatment. The structural and opto-electronic properties of copper as well as iron oxide compounds are investigated and the inuence of thermal annealing is analyzed. Commercially available tenorite (CuO) nanoparticles with a diameter of about 30nm are annealed stepwise up to 1000 C in air and nitrogen atmosphere. The photoluminescence (PL) and photothermal deflection spectroscopy (PDS) results show tenorite band emission at about 1.3 eV, which strongly increases accompanied by a decreasing sub gap absorption with increasing annealing temperature up to 700 C and 1000 C in nitrogen atmosphere and air, respectively. These variations are ascribed to a reduction of the defect concentration. According to literature, a phase transition from tenorite to cuprite (Cu$_{2}$O) is expected and observed after annealing at 800 $^{\circ}$C in nitrogen atmosphere. Strong cuprite band edge emission at about 2 eV accompanied by very weak defect and possibly tenorite band edge emission is found for the samples annealed at 800 $^{\circ}$C and 1000 $^{\circ}$C. Analyzing selected Raman and PDS spectra of the nanoparticles annealed at 800 $^{\circ}$C, the volume fraction of a remaining tenorite phase is estimated to be smaller than 20%. There is noindication for the presence of tenorite after annealing at 1000 $^{\circ}$C. In comparison to results reported for tenorite bulk material and thin films, nanoparticlesinclude fewer defects and therefore show superior opto-electronic properties. The cuprite nanoparticles exhibit excellent properties at least similar to high qualitysingle crystals. In contrast to results usually reported in the literature for cuprite thin films, the PL spectra are not dominated by strongly pronounced defect emission,which confirms that high quality nanoparticles can be easier prepared than corresponding thin films. Likewise, commercially available maghemite ($\gamma$-Fe$_{2}$O$_{3}$) nanoparticles with a diameter of about 8nm to 15 nm are modified by oven annealing in nitrogen atmosphere up to 900 $^{\circ}$C. The PDS and PL results of as-prepared nanoparticles indicate the band gap at about 2 eV and a weakly pronounced and broad emission in the spectral regionof the band gap. Up to an annealing temperature of 450 $^{\circ}$C, the nanoparticles remain in the maghemite phase and their opto-electronic properties are only weakly affected. The PDS spectra reveal typical absorption features that are ascribed to ligand field transitions at about 1.4 eV and 1.9 eV. After further annealing at 550 $^{\circ}$C, [...] 000276128 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0 000276128 650_7 $$xDiss. 000276128 8564_ $$uhttps://juser.fz-juelich.de/record/276128/files/Energie_Umwelt_291.pdf$$yOpenAccess 000276128 8564_ $$uhttps://juser.fz-juelich.de/record/276128/files/Energie_Umwelt_291.gif?subformat=icon$$xicon$$yOpenAccess 000276128 8564_ $$uhttps://juser.fz-juelich.de/record/276128/files/Energie_Umwelt_291.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000276128 8564_ $$uhttps://juser.fz-juelich.de/record/276128/files/Energie_Umwelt_291.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000276128 8564_ $$uhttps://juser.fz-juelich.de/record/276128/files/Energie_Umwelt_291.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000276128 909CO $$ooai:juser.fz-juelich.de:276128$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire 000276128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130277$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000276128 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000276128 9141_ $$y2015 000276128 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000276128 920__ $$lyes 000276128 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0 000276128 9801_ $$aUNRESTRICTED 000276128 9801_ $$aFullTexts 000276128 980__ $$aphd 000276128 980__ $$aVDB 000276128 980__ $$abook 000276128 980__ $$aI:(DE-Juel1)IEK-5-20101013 000276128 980__ $$aUNRESTRICTED 000276128 981__ $$aI:(DE-Juel1)IMD-3-20101013