000276160 001__ 276160
000276160 005__ 20210129220809.0
000276160 0247_ $$2doi$$a10.1038/srep07841
000276160 0247_ $$2Handle$$a2128/9436
000276160 0247_ $$2WOS$$aWOS:000347978300002
000276160 0247_ $$2altmetric$$aaltmetric:2515446
000276160 0247_ $$2pmid$$apmid:25598161
000276160 037__ $$aFZJ-2015-06633
000276160 082__ $$a000
000276160 1001_ $$0P:(DE-HGF)0$$aBar-Sinai, Yohai$$b0
000276160 245__ $$aVelocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation
000276160 260__ $$aLondon$$bNature Publishing Group$$c2015
000276160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1447855642_4293
000276160 3367_ $$2DataCite$$aOutput Types/Journal article
000276160 3367_ $$00$$2EndNote$$aJournal Article
000276160 3367_ $$2BibTeX$$aARTICLE
000276160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276160 3367_ $$2DRIVER$$aarticle
000276160 520__ $$aFrictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics.
000276160 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000276160 588__ $$aDataset connected to CrossRef
000276160 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b1
000276160 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b2
000276160 7001_ $$0P:(DE-HGF)0$$aBouchbinder, Eran$$b3$$eCorresponding author
000276160 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep07841$$gVol. 5, p. 7841 -$$p7841 -$$tScientific reports$$v5$$x2045-2322$$y2015
000276160 8564_ $$uhttps://juser.fz-juelich.de/record/276160/files/srep07841.pdf$$yOpenAccess
000276160 8564_ $$uhttps://juser.fz-juelich.de/record/276160/files/srep07841.gif?subformat=icon$$xicon$$yOpenAccess
000276160 8564_ $$uhttps://juser.fz-juelich.de/record/276160/files/srep07841.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000276160 8564_ $$uhttps://juser.fz-juelich.de/record/276160/files/srep07841.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000276160 8564_ $$uhttps://juser.fz-juelich.de/record/276160/files/srep07841.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000276160 8564_ $$uhttps://juser.fz-juelich.de/record/276160/files/srep07841.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276160 909CO $$ooai:juser.fz-juelich.de:276160$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000276160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000276160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000276160 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000276160 9141_ $$y2015
000276160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276160 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000276160 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000276160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2014
000276160 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000276160 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276160 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276160 915__ $$0LIC:(DE-HGF)CCBYNCSA4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 4.0
000276160 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2014
000276160 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000276160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000276160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276160 920__ $$lyes
000276160 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000276160 980__ $$ajournal
000276160 980__ $$aVDB
000276160 980__ $$aUNRESTRICTED
000276160 980__ $$aI:(DE-Juel1)PGI-2-20110106
000276160 9801_ $$aUNRESTRICTED
000276160 9801_ $$aFullTexts