
PHYSICAL REVIEW E 92, 032408 (2015)

Inhibition of Rayleigh-Plateau instability on a unidirectionally patterned substrate
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A fundamental process of surface energy minimization is the decay of a wire into separate droplets initiated

by the Rayleigh-Plateau instability. Here we study the linear stability of a wire deposited on a unidirectionally

patterned substrate with the wire being aligned with the pattern. We show that the wire is stable when a criterion

that involves its width and the local geometry of the substrate at the triple line is fulfilled. We present this

criterion for an arbitrary shape of the substrate and then give explicit examples. Our result is rationalized using a

correspondence between the Rayleigh-Plateau instability and the spinodal decomposition. This work provides a

theoretical tool for an appropriate design of the substrate’s pattern in order to achieve stable wires of, in principle,

arbitrary widths.
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I. INTRODUCTION

Recently, the deposition of technologically relevant materi-

als on solid substrates that are patterned at the microscale or the

nanoscale has received a large attention. The inhomogeneity

of the substrate allows the deposited material to present

interesting properties such as a reduced dislocation density

[1], ordered arrays of emitting quantum dots or wires [2,3]

or of monodispersed metallic particles [4], tunable adsorp-

tion isotherms in the capillary condensation regime [5–7],

microchannels decorated with a wider and thicker bulged

region [8], superhydrophobicity or superhydrophilicity [9].

These properties may be apprehended by the study of the

wetting behavior of the deposited material, which is mainly

a consequence of the minimization of surface energy at the

length scales of interest.

The decomposition of a rod into droplets is probably one of

the most fundamental dynamical processes of surface energy

minimization. In opposition to a metastable flat film, decaying

through the nucleation of dry patches (holes), the rod is linearly

unstable and decays through the so-called Rayleigh-Plateau

instability. After the experimental observations of Plateau [10],

Rayleigh described the instability of a rotationally invariant

liquid jet through a theory for low-viscosity fluids [11]. Since

these seminal works, a huge amount of literature on the

breakup of a liquid rod has appeared and we refer to Ref. [12]

for a review.

In an equivalent manner, the decay of a solid rod into

droplets may also occur. While for the liquid the transport

mechanism is the fluid flow, it is commonly accepted that

the evolution of the surface of a solid surrounded by the

vapor below the melting temperature is driven by surface

diffusion. In this respect, the evolution of a cylindrical rod

by surface diffusion was discussed theoretically by Nichols

and Mullins [13]. Since the original work by Mullins [14] on

surface diffusion, the technology related to the deposition of

a solid on a solid substrate has emerged and pattern formation

processes such as Asaro-Tiller-Grinfeld instability, quantum

dots formation, or dewetting dynamics are commonly de-

scribed using Mullins’ equation for surface diffusion [15–19].

Closer to our current interest, the decomposition of solid Cu

or Au nanowires into droplets has been reported [20,21] and

explained using the Nichols-Mullins theory. However, the

latter theory does not take into account the contact angle

that exists at the deposited solid-substrate-vapor triple line.

In Ref. [22], McCallum et al. studied the influence of a

flat substrate on the Rayleigh-Plateau instability of a solid

wire evolving via surface diffusion. Although the substrate is

found to have a stabilizing effect, i.e., restricting the range

of unstable wavelengths, the wire is found to be linearly

unstable.

In this article, we consider a wire lying on a unidirectionally

patterned substrate and being aligned with the pattern. We

perturb the wire with sinusoidal modulations of its height along

its axis (varicose). Using the surface diffusion equation, we

show that the wire may be linearly stable. More precisely,

we search for the neutral mode that yields vanishing surface

diffusion fluxes (the mode that neither grows nor decays),

providing a critical wavelength above which the wire is linearly

unstable. For some condition that involves the width of the wire

and the local geometry of the substrate at the triple line, no

solution is found for the neutral mode and the wire is then

linearly stable.

The equilibrium and stability of the deposited material

on a patterned substrate was studied theoretically some time

ago on a general level (see Refs. [23,24] and for a recent

review [25]). Here, the unidirectional pattern of the substrate

that we consider simplifies the problem drastically, allowing

us to explicitly assess the influence on the stability of the

wire of the few parameters describing the substrate’s pattern.

The linear stability of the wire is related to the capillary

filling phenomenon [9] or to the above-mentioned capillary

condensation. Indeed, when the contact angle at the triple line

is smaller than π/2, the surface energy of the wire-substrate

interface is effectively negative and the system may efficiently

decrease its surface energy by a spreading of the deposited

material on the patterned substrate.

After describing the unperturbed wire in Sec. II A, we

perform the linear stability analysis of the perturbed wire

in Sec. II B and find the stability criterion for an arbitrary

pattern of the substrate. In Sec. III, we illustrate our theory

using explicit examples for the pattern. In Sec. IV, we discuss

our results using energetic arguments and finally conclude in

Sec. V.
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II. MODEL

A. Equilibrium state

We consider a substrate whose height is a function that does

not depend on one of the two coordinates in the (x,y) plane, say

y. We thus write the height of the substrate hs(x). Moreover,

we assume that the substrate’s shape is symmetric with respect

to x = 0, i.e., hs(−x) = hs(x). A symmetric equilibrium wire

that possesses a curvature only in the x direction is then

represented by a height

heq(x) = r − x2/(2ρ). (1)

The two quantities r and ρ are related to the position of the

triple line x0 > 0 by the two equations

heq(x0) = hs(x0),

h′
eq(x0) = h′

s(x0) − ϕ,

which describe the contact position and the contact angle,

respectively (see Fig. 1). This yields

r = x2
0

/

(2ρ) + hs(x0), (2)

−x0/ρ = h′
s(x0) − ϕ. (3)

In this description of the equilibrium wire, we have used a

small slope approximation that relies on the assumption of

a small contact angle ϕ ≪ 1. The circular shape that holds

for an arbitrary contact angle is thus replaced by a parabolic

one. This avoids the consideration of different cases due to

a square root
√

ρ2 − x2 in the function describing the height

for the circular shape. In particular, it allows us to have one

single set of formulas [Eqs. (2) and (3)] valid for arbitrary

x0. Moreover, we assume isotropic wire-vapor, wire-substrate,

and substrate-vapor surface energies in order to highlight the

role of the substrate’s pattern.

B. Linear stability analysis

Depending on x0, this one-dimensional wire may be in an

unstable equilibrium state. For the unstable situation, surface

diffusion at the wire-vapor interface is assumed to allow for a

decrease in the surface energy of the system through sinusoidal

modulations of the wire’s height along the y direction (varicose

perturbation modes). The axis of symmetry of the unperturbed

wire remains in this case the symmetry axis of the perturbed

x

h

hs(x)

h(x, y)

y

ϕ

substrate
solid

vapor

0 x0

FIG. 1. Cross section of the wire on the unidirectionally patterned

substrate. At the triple line x = x0, the wire presents the equilibrium

contact angle ϕ.

wire. The height of the wire is now a function of x and y, and

is written as

h(x,y) = heq(x) + δh(x,y), (4)

where

δh(x,y) = ǫ cos(ky)f (x). (5)

Here k is the wave number of the perturbation, ǫ is the

amplitude of the perturbation that will be kept only to the first

power in the linear stability analysis, and f (x) = f (−x) is a

symmetric function that has to be determined. Neglecting bulk

diffusion (see the discussion in Ref. [14]), the surface diffusion

mechanism leads to a normal velocity of the wire-vapor

interface ḣ:

ḣ = −D∇2∇2h, (6)

where D is the surface diffusion coefficient (m4 s−1) [14].

We are searching for the wave number k∗ for which the

perturbation neither grows nor decays, i.e., for which ḣ = 0.

This means that the perturbation itself obeys the bi-Laplacian

equation

∇2∇2δh(x,y) = 0. (7)

In addition, since we assume surface diffusion only at the

wire-vapor interface, the conservation of mass in the system

implies a no-flux boundary condition at the triple line

∂

∂x

(

∂2h

∂x2
+

∂2h

∂y2

)

= 0, (8)

yielding

f ′′′(x0) − k2f ′(x0) = 0. (9)

The symmetric function f (x) that allows Eq. (7) to be fulfilled

and that obeys the boundary condition (9) is

f (x) = cosh(kx). (10)

The critical wave number k∗ is then determined using the

boundary conditions for the contact with the substrate and the

contact angle at the new position of the triple line x0 + δx(y),

where δx ∼ ǫ cos(ky):

h(x0 + δx,y) = hs(x0 + δx), (11)

∂xh(x0 + δx,y) = h′
s(x0 + δx) − ϕ. (12)

Here, we have neglected the triple line tension that may correct

the contact angle equation at large curvatures of the triple line

[26]. Together with Eqs. (1) and (3), the last two equations

yield

x0f
′(x0)/f (x0) = As(x0), (13)

where

As(x0) = 1 + x0h
′′
s (x0)/ϕ − h′

s(x0)/ϕ. (14)

The critical wave number k∗ thus obeys

F (k∗x0) = As(x0), (15)

where

F (z) = z tanh(z). (16)
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F (z) is a positive and even function. It is parabolic near the

origin, i.e., F (z) ≃ z2 for |z| ≪ 1, and it rapidly reaches the

linear behavior F (z) ≃ |z| for |z| ≫ 1. Therefore k∗ exists only

if As(x0) > 0. Then, the wire is unstable for k < k∗ and stable

for k > k∗. Let us note that when 0 < As(x0) ≪ 1, we have

k∗x0 ≪ 1, i.e., the unstable wavelengths of the wire are much

larger than its width. On the other hand, when As(x0) < 0, k∗

does not exist and the wire is stable for all k. This stability is

entirely due to the pattern of the substrate. Especially, it is not

due to any anisotropy of surface energy, a property that may

indeed have a stabilizing influence [27,28]. Furthermore, the

stability of the wire depends only on its width x0 and on the

local geometry of the substrate at the triple line through h′
s(x0)

and h′′
s (x0). This demonstrates the possibility of the deposition

of stable wires using an appropriate design of the substrate’s

pattern.

A few remarks are in order. First, let us note that the

antisymmetric modes [for which one replaces cosh by sinh

in Eq. (10)] are more stable than the symmetric ones and are

thus irrelevant here. Second, the conclusions drawn from the

above analysis could as well be performed by an energetic

calculation. Indeed, for k < k∗, the energy per unit volume of

the perturbed wire is smaller than the energy per unit volume

of the unperturbed one, the latter being then linearly unstable.

Conversely, for k > k∗, it is larger and the unperturbed wire is

linearly stable. Finally, we would like to mention that our

analysis reproduces the known results for a flat substrate.

Indeed, setting As(x0) = 1, we recover k∗x0 ≃ 1.200, which

is found as the small contact angle limit of the theory presented

in Ref. [22].

III. EXAMPLES

Let us illustrate the behavior of As(x0) for a few given

substrate shapes.

A. Gaussian groove

First, let us consider a Gaussian groove with

hs(x) = −h0 exp[−x2/(2σ 2)]. (17)

Inserting hs into Eq. (14) we obtain

As(x0) = 1 −
[

h0x
3
0

/

(ϕσ 4)
]

exp
[

− x2
0

/

(2σ 2)
]

< 1.

For h0/(ϕσ ) > (e/3)3/2, As is negative in some range around

x0 =
√

3σ and the wire is stable in this range. We illustrate

this in Fig. 2(a) by plotting As(x0) as a function of x0/σ for

h0/(ϕσ ) = 0.5 and h0/(ϕσ ) = 1.5. For h0/(ϕσ ) = 0.5, As is

positive for all x0 and therefore the wire is unstable for all x0.

For h0/(ϕσ ) = 1.5, the situation is different and the wire is

stable in the range of x0 (represented by the horizontal arrow)

where As < 0.

B. Sinusoidal substrate

Second, let us consider a substrate with a sinusoidal pattern:

hs(x) = h0 cos(ksx).

Using this substrate shape in Eq. (14) gives

As(x0) = 1 + (ksh0/ϕ)[sin(ksx0) − ksx0 cos(ksx0)].

h0/(ϕσ) = 0.5

h0/(ϕσ) = 1.5

x0/σ

As

0.0 1.0 2.0

-4

 0

 4

 8

As

0 2 4 6

-1.0

 0.0

 1.0
(a)

(b)

ksh0/ϕ = 0.44

ksh0/ϕ = −0.44

ksx0/2π

FIG. 2. Function As as a function of (a) x0/σ for a Gaussian

groove of depth h0 and (b) ksx0 for a sinusoidal pattern of amplitude

|h0| (the sign of h0 describes the possibility for the wire to be centered

either on the top of a hill or on the bottom of a valley of the substrate;

see text for precisions). The values of x0 for which As is negative

correspond to stable situations for the wire. The corresponding ranges

are represented by horizontal arrows.

The equilibrium state of the wire may be centered on the top

of a hill (h0 > 0) or on the bottom of a valley (h0 < 0). The

function As(x0) is an oscillating function whose amplitude

increases with x0. In Fig. 2(b), we present As(x0) as a

function of ksx0/2π for ksh0/ϕ = 0.44 and ksh0/ϕ = −0.44.

Alternatively, the valley-centered and the hill-centered wires

present an infinite succession of bands of x0 where As < 0,

i.e., where they are stable. An interesting effect following

from our analysis concerns the fact that for an arbitrarily

small amplitude h0, there exist bands of stable x0 as soon as

ksx0 ≫ ϕ/(ksh0). Besides this interesting result, two remarks

are in order for this case of a sinusoidal pattern. First, there

is an upper bound on the amplitude h0 in order for our

analysis to remain correct at arbitrary x0. For a given x0, we

indeed have heq(x) > hs(x) for all x < x0 only if h0 is small

enough. A sufficient (but not necessary) condition for this is

ks |h0|/ϕ < 1/2 [note the choice of h0 in Fig. 2(b)]. Second,

it should be mentioned that the alternation of stable bands for

the valley-centered wire and the hill-centered one has energetic

reasons. Indeed, it can be shown that for a given area S of the

cross section of the wire, the two equilibrium states (valley-

or hill-centered) do not have the same surface energy. Then,

when one increases S, the minimum of energy changes from

one equilibrium state to the other alternatively. However, a

precise description of this phenomenon is beyond the scope of

this paper, and here we just aim at showing that for a sinusoidal

pattern, the wire possesses an infinite succession of bands of

stable widths x0, whatever the amplitude h0 of the sinusoid.
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C. V-shaped substrate

We focus now on a V-shaped pattern of the substrate, i.e.,

hs(x) = ϕ0|x| (18)

with ϕ0 > 0. This gives, using Eq. (14),

As(x0) = 1 − ϕ0/ϕ. (19)

The wire is thus stable, i.e., As < 0, if ϕ0/ϕ > 1. We recover

here the usual criterion for the well-known capillary filling

phenomenon or the capillary condensation for which the

material is adsorbed on the substrate although it is not stable

thermodynamically (ρ < 0).

We would like also to mention the case where the V shape

ends with a sharp edge at |x| = xs > 0, i.e.,

hs(|x| < xs) = ϕ0(|x| − xs), hs(|x| > xs) = 0, (20)

with ϕ0 > 0. At x = xs , h′
s possesses a discontinuity and we

may regularize it with the help of a microscopic length scale

a ≪ ϕ0xs , which yields h′′
s (xs) = −ϕ0/a. This implies that

As(xs) = 1 − ϕ0/ϕ − ϕ0xs/(ϕa) < 0, (21)

and −As(xs) ≫ 1. We thus find here that when the triple line

is in the so-called pinned state (when the contact angle is not

properly defined without the introduction of the microscopic

length scale a) the wire is stable against the Rayleigh-Plateau

instability.

D. Chemically patterned substrate

One may, in principle, introduce a space-dependent contact

angle ϕ(x), which is typical for the so-called chemically pat-

terned substrates. Then As possesses an additional contribution

−x0ϕ
′(x0)/ϕ(x0), i.e.,

As(x0) = 1 +
x0[h′′

s (x0) − ϕ′(x0)]

ϕ(x0)
−

h′
s(x0)

ϕ(x0)
. (22)

Thus, when one introduces a stripe with ϕ(|x| < xs) = ϕ1 on a

more hydrophobic flat substrate with ϕ(|x| > xs) = ϕ2 > ϕ1,

then ϕ′(xs) is positive and large (the same regularization as

above is possible) and thus the wire is stable when the triple

line is pinned at xs , i.e., As(xs) < 0. This is precisely what was

observed in the experiments presented in Ref. [8] before the

transition to a bulged state.

IV. DISCUSSION

A. Energetics

We now analyze the Rayleigh-Plateau stability criterion

As(x0) < 0 where As is given by Eq. (14) using energetic ar-

guments. The surface energy per unit length of the equilibrium

wire E(x0) consists of two contributions:

E(x0) = γ1L1(x0) + γ2L2(x0), (23)

where L1 and L2 are the lengths of the wire-vapor and wire-

substrate interfaces, respectively, given by

L1(x0) = 2

∫ x0

0

dx
[

1 + h′2
eq(x)/2

]

, (24)

and

L2(x0) = 2

∫ x0

0

dx
[

1 + h′2
s (x)/2

]

. (25)

γ1 is the energy density of the wire-vapor interface and γ2 is the

difference between the energy densities of the wire-substrate

and substrate-vapor interfaces (γ2 is negative for ϕ < π/2).

According to Young’s law, we have γ2 = −γ1 cos ϕ ≃ −(1 −
ϕ2/2)γ1. We may also calculate the cross section area S of the

wire given by

S(x0) = 2

∫ x0

0

dx[heq(x) − hs(x)]. (26)

One may then show that

dE/dS = (dE/dx0)(dS/dx0)−1 = γ1/ρ, (27)

and since

d2E/dS2 = γ1(dS/dx0)−1d(1/ρ)/dx0, (28)

that

d2E

dS2
= −

γ1

2x3
0

As(x0)

1 − As(x0)/3
. (29)

The transition that we describe here from an unstable wire

(As > 0) to a stable wire (As < 0) thus corresponds to a

change of sign of d2E/dS2. More precisely, our analysis

reproduces the usual criterion: if the second derivative of

the energy with respect to the conserved quantity is negative

(As > 0), spatial fluctuations are amplified (spinodal decom-

position), while if it is positive (As < 0) the fluctuations are

damped.

B. Ground state

Let us now make a remark that concerns the ground state

of the system. An obvious attractor for the late stages of the

temporal evolution that follows the spinodal decomposition is

a coarsened state that develops through an Ostwald ripen-

ing regime. Here it means that after the Rayleigh-Plateau

instability, the wire breaks up into separate droplets, and

the subsequent evolution consists of the growth of the large

droplets at the expense of the small ones, leaving at the

end a single coarse droplet. If the wire is stable against

Rayleigh-Plateau instability, the ground state of the system

is determined by the comparison of the energy of the wire

and the one of the coarsened state. At this point, one should

note that while the wire extends indefinitely in the y direction,

the coarse droplet is localized. On the one hand, the wire’s

energy per unit volume is its energy per unit length E divided

by its cross section area S. On the other hand, if R is the

linear dimension of the coarse droplet, its energy scales as

R2, its volume as R3, and its energy per unit volume as 1/R.

Thus for infinite volumes the energy per unit volume of the

coarse droplet vanishes. Therefore when the energy per unit

length E of the wire is positive, the latter is metastable and

thermally activated finite amplitude fluctuations will cause its

decay into droplets (nucleation) with a subsequent Ostwald

regime. Conversely, when E is negative, the coarse droplet

is not the ground state of the system. However, a bit of care

should be taken in order to apprehend the ground state in this
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case. Let us consider a linear groove, for example, the Gaussian

groove hs(x) = −h0 exp[−x2/(2σ 2)]. For large enough h0, E

presents a maximum at some x0 and a minimum at a larger x0

(these two extrema verify dE/dS = γ1/ρ = 0). Then above a

critical h0, the value Emin of E at this minimum is negative. Let

us denote by Smin the cross-section area of this wire having the

minimum energy per unit length Emin. This wire is stable with

As < 0 and corresponds to the ground state of the system

when the volume of deposited material per unit length of

the substrate is Smin. A wire with S slightly larger than Smin

remains stable against the Rayleigh-Plateau mechanism, its

energy per unit length E is larger than Emin, and its energy

per unit volume is E/S. Let us now consider a system with a

volume of deposited material per unit length of the substrate

being also S and consisting of a wire with Smin coexisting with

a coarse droplet. Due to the argument given above concerning

the energetics of a coarse droplet, the energy per unit volume

of this system is Emin/S < E/S. Therefore the configuration

with a wire of cross-section area Smin coexisting with a coarse

droplet represents the ground state of the system when the

volume of deposited material per unit length of the substrate

is larger than Smin.

This transition from a ground state presenting a single wire

to a ground state presenting a wire coexisting with a coarse

droplet is actually an interesting point to investigate further.

Here, this transition is described for infinite volumes, i.e.,

for an infinitely long wire and an infinitely large droplet. For

a finite length of the wire, it is believed that the transition

should occur in a rather similar way as the bifurcation toward

a bulged state presented in Ref. [8]. All these scenarios

where the deposited material tends to spread on the substrate

due to energetic reasons correspond to the so-called hemi-

wicking phenomenon [9] (in opposition to simple wicking that

describes the spreading in a pore and for which no interface

with the vapor is produced).

Let us finally note that in the case of a wire of finite length,

another mechanism for the decay of the wire into droplets may

exist. Indeed, the end of the wire is subjected to a retraction

that favors necking, and a so-called edge-driven instability was

evidenced for a nickel wire on a flat substrate in Ref. [29].

Investigating this issue for the type of patterned substrate

that is studied in the present work is also an interesting

perspective.

V. CONCLUSION

We have studied analytically the linear stability against

the Rayleigh-Plateau mechanism of a wire aligned with the

unidirectional pattern of a substrate. We use the neutral modes

for surface diffusion (the eigenmodes that make the surface

diffusion fluxes vanish) to find a criterion for stability. This

criterion involves the wire’s width and the local geometry

of the substrate at the triple line. This criterion is found

for an arbitrary shape of the substrate and we illustrate our

analysis using explicit examples for the substrate’s pattern. In

a Gaussian groove, there exists a range of stable widths of

the wire for large enough depth-to-width ratios of the groove.

For a groove presenting a sharp edge, we show that the wire

is stable at widths where the triple line is pinned and discuss

the link to the experiment in Ref. [8]. For a sinusoidal pattern,

there exists an infinite succession of bands of stable widths.

We finally show that energetic arguments allow an analogy

between the Rayleigh-Plateau instability described here and

the spinodal decomposition process.

Our results shed light on the relation between the width

of the wire and the geometry of the substrate in order to

achieve stable configurations. In principle this relation allows

one to produce stable wires of arbitrary width by an appropriate

design of the substrate’s pattern.
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