001     276177
005     20220930130050.0
024 7 _ |a 10.5194/bgd-12-9879-2015
|2 doi
024 7 _ |a 1810-6277
|2 ISSN
024 7 _ |a 1810-6285
|2 ISSN
024 7 _ |a 2128/9444
|2 Handle
037 _ _ |a FZJ-2015-06644
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Jiang, Xiaoqian
|0 P:(DE-Juel1)156268
|b 0
|e Corresponding author
245 _ _ |a Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil
260 _ _ |a Katlenburg-Lindau [u.a.]
|c 2015
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1466148483_27116
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To maximize crop productivity fertilizer P is generally applied to arable soils, a significant proportion of which becomes stabilized by mineral components and in part subsequently becomes unavailable to plants. However, little is known about the relative contributions of the different organic and inorganic P bound to Fe/Al oxides in the smaller soil particles. The alkaline (NaOH-Na2EDTA) extraction with solution 31P-nuclear magnetic resonance (31P-NMR) spectroscopy is considered as a reliable method for extracting and quantifying organic P and (some) inorganic P. However, any so-called residual P after the alkaline extraction has remained unidentified. Therefore, in the present study, the amorphous (a) and crystalline (c) Fe/Al oxide minerals and related P in soil aggregate-sized fractions (> 20, 2–20, 0.45–2 and < 0.45 μm) were specifically extracted by oxalate (a-Fe/Al oxides) and dithionite (DCB, both a- and c-Fe/Al oxides). These soil aggregate-sized fractions with and without the oxalate and DCB pre-treatments were then sequentially extracted by alkaline extraction prior to solution 31P-NMR spectroscopy. This was done to quantify the various chemical P forms which were associated with a- and c-Fe/Al oxides both in alkaline extraction and in the residual P of different soil aggregate-sized fractions.The results showed that overall P contents increased with decreasing size of the soil aggregate-sized fractions. However, the relative distribution and speciation of varying P forms were found to be independent of soil aggregate-size. The majority of alkaline extractable P was in the a-Fe/Al oxide fraction (42–47 % of total P), most of which was orthophosphate (36–41 % of total P). Furthermore, still significant amounts of particularly monoester P were bound to the oxides. Intriguingly, however, Fe/Al oxides were not the main bonding sites for pyrophosphate. Residual P contained similar amounts of total P associated with both a- (10–13 % of total P) and c-Fe oxides (10–12 % of total P) in various aggregate-sized fractions, suggesting that it was likely occluded within the a- and c-Fe oxides in soil. This implies that with the dissolution of Fe oxides, these P may be released and thus available for plants and microbial communities.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 1
700 1 _ |a Willbold, S.
|0 P:(DE-Juel1)133857
|b 2
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 3
700 1 _ |a Klumpp, E.
|0 P:(DE-Juel1)129484
|b 4
773 _ _ |a 10.5194/bgd-12-9879-2015
|g Vol. 12, no. 13, p. 9879 - 9903
|0 PERI:(DE-600)2146550-2
|n 13
|p 9879 - 9903
|t Biogeosciences discussions
|v 12
|y 2015
|x 1810-6285
856 4 _ |u https://juser.fz-juelich.de/record/276177/files/bg-12-6443-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276177/files/bg-12-6443-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276177/files/bg-12-6443-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276177/files/bg-12-6443-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276177/files/bg-12-6443-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276177/files/bg-12-6443-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:276177
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156268
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145865
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21