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We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using

the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain

current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact

diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function

of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus

with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model

for which the charge Drude weight decays exponentially with system size, as expected for a nonintegrable model.

We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the

conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the

extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization

mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse

mass ratio of η � 0.25.
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I. INTRODUCTION

The Hubbard model is a paradigmatic model in the theory of

strongly correlated electrons, capturing some of the essential

many-body effects due to short-range electronic correlations

in condensed matter physics: Mott-insulating behavior and the

resulting localization of magnetic moments with antiferromag-

netic spin correlations. Moreover, the Hubbard model is the

parent Hamiltonian for the Heisenberg and t-J model, which

describe its low-energy physics in the strongly interacting

regime [1–3].

The interest in the one-dimensional (1D) version of the

model arises because of the existence of an exact solution

based on the Bethe ansatz [4] and its relevance for quasi-

1D materials [5–9], nanostructures [10–12], and realizations

with ultracold atomic gases in optical lattices [3,13]. A recent

optical-lattice experiment has investigated the nonequilibrium

charge transport in the two-dimensional Hubbard model [14].

The Hamiltonian of the 1D repulsive Hubbard model is

given by H =
∑L

l=1 hl with local terms,

hl = −th
∑

σ

(c
†
l,σ cl+1,σ + H.c.) + U

(

nl,↑ −
1

2

)

×
(

nl,↓ −
1

2

)

, (1)

with cL+1,σ = c1,σ , where cl,σ (c
†
l,σ ) annihilates (creates) a

fermion with spin σ = ↑,↓ on site l, and nl,σ = c
†
l,σ cl,σ is the

local density. L is the number of sites, th is the hopping matrix

element, and U denotes the on-site Coulomb repulsion.
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Despite the success of the theory of such integrable systems

in computing many equilibrium properties, the quantitative

and qualitative understanding of transport within the linear

response theory has proven to be a hard problem [15,16]. While

the zero-temperature transport properties are completely un-

derstood (see, e.g., [17]), the main open questions concern

transport of charge, spin, or energy at finite temperatures

T > 0. The theory of the algebraic structure of the Bethe ansatz

provides knowledge of local conservation laws, which can give

rise to ballistic transport [18].

This ballistic transport is usually described via the Drude

weight D, the zero-frequency contribution in the real part of

the conductivity σ (ω),

Re σ (ω) = 2πDδ(ω) + σreg(ω). (2)

As was argued by Zotos, Naef, and Prelovšek [18], a finite

Drude weight exists if a lower bound is obtained from the

Mazur inequality,

D �
1

2T L

∑

i

〈Qij 〉2

〈

Q2
i

〉 , (3)

where 〈•〉 is the thermodynamic average at temperature T .

Such a bound exists if at least one conserved charge Qi has

a finite overlap with the current operator j . The Qi =
∑

l ql,i

are commonly ordered by their range, i = 1 corresponding

to particle number Q1 = N and i = 2 corresponding to the

Hamiltonian Q2 = H . Q3 has range three (i.e., ql,3 involves

operators acting on three neighboring sites) and has the same

structure as the energy-current operator, yet the two differ in the

prefactor of one term [18]. As a consequence, thermal transport

in the one-dimensional Hubbard model is ballistic at any finite

temperature T > 0 [18,19]. Recently, it has been shown that
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there are also quasilocal conserved quantities in Bethe-ansatz

integrable systems which can be crucial for some transport

channels [20–22]. Using the Mazur inequality, one obtains a

nonzero Drude weight for charge transport for any filling n =
N/L (N is the number of fermions) other than n = 1/2, from

considering only the leading nontrivial local conserved charge

Q3 of range three. The case of half filling has been discussed

controversially, with some studies arguing in favor of a finite

charge Drude weight D > 0 [17,23] while others provided

evidence for a vanishing D = 0 [24–26] or at best a very small

D [26] in the thermodynamic limit (tDMRG gives a small

upper bound to the Drude weight). The situation thus appears

to be similar to spin transport in the spin-1/2 XXZ chain

at zero magnetization, where also no local conservation law

yields a nonzero bound to the spin Drude weight [18], while

numerical results [27–33] and Bethe-ansatz-based calculations

[34,35] strongly indicate a nonzero spin Drude weight at least

in its gapless phase, with the possible exception of the point

of full SU(2) symmetric exchange, i.e., the Heisenberg chain.

For that model, though, quasilocal conservation laws have

ultimately been identified as being at the heart of the ballistic

spin transport [20,21] at zero magnetization and in its gapless

phase.

The connection between (quasi-)local conservation laws

and ballistic transport is closely related to how such conser-

vation laws affect thermalization in integrable systems [36].

Consider a quantum quench in which the force driving the

current is turned off. If this initial condition leads to a finite

value of 〈jQi〉, then the current will never completely decay

back to zero. A simple example is the quench of a flux piercing

a ring, which has been studied in this context [37].

Besides the question of the (divergent) zero-frequency

contribution, the actual frequency dependence of the optical

conductivity σreg(ω) constitutes an equally interesting problem

[26,38–40]. Some insight can be gained from effective low-

energy theories such as bosonization [41–43], which is,

however, limited to very low temperatures and may not

correctly capture effects due to integrability without fine-

tuning of parameters. An exact diagonalization study observed

strong anomalous finite-size effects in σreg(ω) of integrable

Mott insulators [38], while many studies conclude that the dc

conductivity,

σdc = lim
ω→0

σreg(ω), (4)

is nonzero in such systems [26,38]. A recent density matrix

renormalization group study suggests a generic divergence

of σdc(T ) at low temperatures with σdc ∝ 1/T [26], different

from the Fermi-liquid behavior σdc ∝ 1/T 2 that emerges in

sufficiently high dimensions [44]. For the high-temperature

regime, a lower bound for the diffusion constant D has been

derived [45], reading

D � const. ×
t3
h

U 2
. (5)

(Note that D �= D.) While our primary interest is in the

behavior in the linear response regime, we mention that

numerical simulations of boundary-driven transport through

open Hubbard chains also indicate diffusive high-temperature

transport [46].

In our work, we revisit the problem of charge transport in

the Hubbard chain at half filling by employing the method of

dynamical quantum typicality (DQT). Basically, this approach

uses single pure states that are constructed to yield typical

thermal behavior at finite temperature to compute the time

dependence of correlation functions. In the current context

of transport, this method has recently been applied to the

calculation of the spin Drude weight in XXZ chains [33] and

to transport in various nonintegrable models [47–49]. Since

only a pure state needs to be propagated in the DQT method,

any means of propagating the wave function such as a forward

integration or Krylov-space-based approaches can be used,

giving access to system sizes as large as L = 18, which is

comparable to what can be reached for the ground state via

Lanczos methods.

We extract the Drude weight from the long-time behavior

of current autocorrelation functions and study its finite-size

dependence. We observe a power-law decay with system size

to zero, which we interpret in the framework of the eigenstate

thermalization hypothesis applied to integrable systems [50].

Thus, our results confirm the predictions of Ref. [24,25], i.e.,

a vanishing Drude weight D = 0 at finite temperatures. We

further analyze the optical conductivity, for which our data

suggest a finite σdc. Depending on how the time-dependent data

are converted to frequency, one either recovers the anomalous,

system-size dependent fluctuations discussed in [38] or one

obtains a smooth, diffusivelike low-frequency dependence.

The Hubbard model can equivalently be formulated as a

spin-1/2 model defined on a two-leg ladder: Spin-up and

spin-down fermions live on the two separate legs, where

the exchange is of the XY type along the legs, while on

the rungs the Hubbard interaction translates into an Ising

interaction. This reformulation is, on the one hand, useful

for numerical implementations, and on the other hand, there

are several natural ways of breaking the integrability that

emerge in this picture. Transport in various spin Hamiltonians

defined on spin ladders has in fact been intensely investigated

[29,47,49,51–55].

Here, we consider the mass-imbalanced Hubbard model as

an example of a nonintegrable system. The local Hamiltonian

now takes the form,

hl = −
∑

σ=↑,↓

[tσ (c
†
l,σ cl+1,σ + H.c.)] + U

(

nl,↑ −
1

2

)

×
(

nl,↓ −
1

2

)

, (6)

i.e., we introduce different hopping matrix elements tσ , σ =
↑,↓, for the two fermionic species. We define the inverse mass

ratio as

η =
t↓

t↑
. (7)

In the limit of η = 0, also known as the Falicov-Kimball model,

one naturally obtains perfectly insulating behavior at any

temperature due to an effective Anderson-localization mech-

anism. In this case, all the local density operators nl,↓ of the

heavy species become conserved quantities, i.e., [H,nl,↓] = 0.

Thus, for a given random distribution of immobile spin-down

fermions, via the interaction term Unl,↑nl,↓, one effectively
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obtains a diagonal disorder potential for the light fermions with

local potentials ǫl = Unl,↓ drawn from a binary distribution

ǫl = 0,U . The translational invariance of the original model

at a given density of n↓ = N↓/L is restored by averaging over

many random distributions of the heavy fermions.

We are interested in the dependence of the conductivities

σ↑(ω) and σ↓(ω) of the heavy and light species, respectively,

as a function of the inverse mass ratio η. First, we compute the

associated Drude weights, which vanish approximately expo-

nentially fast with system size, as expected for a nonintegrable

model [50,56,57]. For intermediate values of η, we observe

a regular form of σ↑(ω) and σ↓(ω). The dc conductivity of

the heavy component appears to simply vanish quadratically

with t↓, while the presence of the heavy fermions leads to an

approximately exponential decay of the dc conductivity of the

light fermions as a function of decreasing η, which we are able

to resolve for η � 0.25.

The mass-imbalanced Hubbard model has recently attracted

renewed interest in the context of many-body localization

[58,59] since several authors have considered the possibility

of many-body localization in translationally invariant systems

[60–62]. In our model, interactions could thus potentially lead

to a nontrivial effect in the strongly mass-imbalanced regime.

Recent work has suggested, though, that there likely is no

mass-imbalance driven localization-delocalization transition

in our model at a nonzero η, but a quasi-many-body localized

behavior with anomalous diffusion at small values of η [63].

These results are based on exact diagonalization with L � 10.

Our results suggest a finite, albeit exponentially small dc

conductivity at least for η � 0.25.

The plan of the paper is the following. Section II sum-

marizes the definitions and expressions of the conductivity,

the Drude weight, and current autocorrelation functions. In

Sec. III, we provide a brief introduction to the DQT method and

its application to the calculation of finite-temperature current

autocorrelation functions. Section IV contains our results for

the integrable Hubbard chain at half filling, while we present

our data and the discussion of the mass-imbalanced model

in Sec. V. We conclude with a summary and an outlook in

Sec. VI.

II. DEFINITIONS

Using the Jordan-Wigner transformation, the mass-

imbalanced Fermi-Hubbard model can equivalently be for-

mulated as a spin-1/2 model defined on a two-leg ladder,

hl =
∑

σ=↑,↓

−2tσ
(

Sx
l,σ Sx

l+1,σ + S
y

l,σS
y

l+1,σ

)

+ USz
l,↑Sz

l,↓, (8)

where spin-up and spin-down fermions live on the two separate

legs and the Hubbard interaction translates into an Ising

interaction. Our numerical implementation is formulated in

the spin language.

We derive the charge current from the continuity equation

[18], leading to j = j↑ + j↓ and jσ = i
∑

l[nl,σ ,hl] in the

Hubbard notation. In the spin notation,

jσ = −2tσ
∑

l

(

Sx
l,σS

y

l+1,σ − S
y

l,σ Sx
l+1,σ

)

, (9)

is the spin current in the first (σ =↑) or second (σ =↓)

leg. We correspondingly study the two current autocorrelation

functions at inverse temperature β = 1/T ,

Cσ (t) =
Re 〈jσ (t)jσ 〉

LZ
=

Re Tr{e−βH jσ (t)jσ }
LTr{e−βH }

, (10)

where the time argument of jσ (t) refers to the Heisenberg

picture, jσ (0) = jσ , and Cσ (0) = t2
σ /2 in the high-temperature

limit β → 0.

From the time dependence of Cσ (t) we determine the

quantities,

C̄σ (t1,t2) =
1

t2 − t1

∫ t2

t1

dt Cσ (t), (11)

in a time interval [t1,t2] where Cσ (t) has decayed to its long-

time value C(t1 < t < t2) ≈ C(t → ∞) and is practically

constant. Thus, the quantities C̄σ (t1,t2) approximate the finite-

size Drude weights of the two legs given by

Dσ =
1

2π
lim

t2→∞
C̄σ (0,t2). (12)

We determine the frequency-dependent optical conductivity

Re σσ,tmax
(ω) via the finite-time Fourier transformation,

Re σσ,tmax
(ω) =

1 − e−βω

ω

∫ tmax

0

dt eıωt Cσ (t). (13)

Here, the choice of a particular tmax implies a frequency

resolution δω ≈ π/tmax. In the thermodynamic limit L → ∞,

Re σσ,tmax
(ω) is a smooth function on an arbitrarily small scale

δω → 0 and does not depend on the actual value of tmax

chosen, as long as it is large compared to the current relaxation

time [48]. For any finite L, however, it is important to find a

reasonable tmax where finite-size effects are well controlled. In

particular, for integrable systems, finding such a tmax can be a

subtle issue, as discussed later in detail. Note that, to leading

order in β, Re σσ (ω) ∝ β and that Re σσ (ω) = σσ (ω) in the

high-temperature limit.

If we find a (tmax,L) region with no significant dependence

on tmax and L, we extract the dc conductivity σσ,dc as the

low-frequency limit,

σσ,dc = lim
ω→0

σσ,tmax
(ω). (14)

In case of vanishing Drude weights, σσ,dc/χ is identical to the

time-dependent diffusion constant,

Dσ (tmax) =
β

χ

∫ tmax

0

dt Cσ (t), (15)

with χ being the static susceptibility and reading, at β → 0,

χ

β
=

Tr
{(

∑

l S
z
l,σ

)2} −
(

Tr
{
∑

l S
z
l,σ

})2

L
=

1

4
. (16)

In the case of significant finite-size Drude weights, however,

Dσ (tmax) may not depend on tmax and L, while σσ,dc clearly

does. Therefore, in such cases, the time-dependent diffusion

constant provides a useful alternative for extracting transport

coefficients on the basis of finite systems. Beyond technical

aspects,D(t) also has a clear physical interpretation: It directly

yields information on how spatial variances of density profiles

evolve in time [64–67] for any finite L.
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III. DYNAMICAL QUANTUM TYPICALITY

A. Concept

In this section we first introduce a very accurate approxima-

tion of current autocorrelation functions. This approximation

then provides the basis for the numerical technique used

throughout our work. The central idea is to replace the trace

operation Tr{•} =
∑

i〈i| • |i〉 in Eq. (10) by a single scalar

product 〈ψ | • |ψ〉, where |ψ〉 is a single pure state drawn at

random. Since we aim at describing the current dynamics in

the full Hilbert space, |ψ〉 is drawn at random in the full basis.

Conveniently, |ψ〉 is randomly chosen in the eigenbasis of the

particle number,

|ψ〉 =
∑

N

|ψN 〉, |ψN 〉 =
dN
∑

s

(as + ı bs) |s〉, (17)

where s = s(N ) is a label for the eigenstates with particle

number N . The coefficients as and bs are random real numbers.

To be precise, these coefficients are chosen according to a

Gaussian distribution with zero mean. Thus, the pure state

|ψ〉 is chosen according to the unitary invariant Haar measure

[68,69] and, according to typicality [70–75], a representative

of the statistical ensemble.

The pure state |ψ〉, and each |ψN 〉, correspond to the limit

of high temperatures β → 0. We incorporate finite tempera-

tures β �= 0 by introducing |ψN (β)〉 = exp(−βH/2) |ψN 〉 and

rewriting the current autocorrelation function in Eq. (10) in the

form [33,47,68,69,76,77] (skipping the index σ for clarity),

C(t) =
Re

∑

N 〈ψN (β)|j (t) j |ψN (β)〉
L

∑

N 〈ψN (β)|ψN (β)〉
+ ǫ(|ψ〉), (18)

where ǫ(|ψ〉) is a statistical error resulting from the random

choice of |ψ〉. This error vanishes when sampling over several

|ψ〉 is performed, i.e., ǭ = 0.

However, the central advantage of Eq. (18) is not the

vanishing mean error ǭ = 0 but the knowledge about the

standard deviation of errors �(ǫ). This standard deviation is

bounded from above by [33,68,69,77],

�(ǫ) � O

(√
Re 〈j (t) j j (t) j 〉

L
√

deff

)

, (19)

where deff is the effective dimension of the Hilbert space.

In the limit of high temperatures β → 0, deff = 4L is the

full Hilbert-space dimension. Consequently, if the length

L is increased, �(ǫ) decreases exponentially fast with L.

At arbitrary β, deff = Tr{exp[−β(H − E0)]} is the partition

function with ground-state energy E0, reflecting the number

of thermally occupied states, and also scales exponentially fast

with L [33]. Therefore, while the error is exactly zero in the

thermodynamic limit L → ∞, this error can be already very

small at finite but large L and sampling is unnecessary, as is

the case for all examples considered in our work.

B. Numerical implementation

Most importantly, the approximation in Eq. (18) can be

calculated without knowing the eigenstates and eigenvalues of

the Hamiltonian. This calculation is based on the two auxiliary

pure states,

|�N (β,t)〉 = e−ıH t−βH/2 |ψN 〉, (20)

|ϕN (β,t)〉 = e−ıH t j e−βH/2 |ψN 〉. (21)

Both states are time- and temperature-dependent and the only

difference between the two states is the additional current

operator j in the right-hand side of Eq. (21). Using these

states, the approximation in Eq. (18) reads

C(t) =
Re

∑

N 〈�N (β,t)|j |ϕN (β,t)〉
L

∑

N 〈�N (β,0)|�N (β,0)〉
. (22)

Apparently, the full time and temperature dependence in

Eq. (22) results from the evolution of the pure states only,

i.e., there the current operator j is simply applied to the initial

or time-evolved states.

For, e.g., |�N (β,t)〉, the β dependence is generated by an

imaginary-time Schrödinger equation,

ı
∂

∂(ıβ)
|�N (β,0)〉 =

H

2
|�N (β,0)〉, (23)

and the t dependence by the usual real-time Schrödinger

equation,

ı
∂

∂t
|�N (β,t)〉 = H |�N (β,t)〉. (24)

These differential equations can be solved by the use of

straightforward iterative methods such as, e.g., Runge-Kutta

[33,47,77]. We use a massively parallel implementation of

a Suzuki-Trotter product formula or Chebyshev polynomial

algorithm [78,79], allowing us to study quantum systems with

as many as 2L = 36 lattice sites (L = 18 in the fermionic

language), where the Hilbert-space dimension is d = O(1011).

As compared to exact diagonalization, this dimension is larger

by orders of magnitude. Yet, we do not exploit translation

invariance of Hamiltonian and current. This symmetry adds

momentum as a good quantum number and an additional layer

of parallelization [47].

In practice, we use the Chebyshev polynomial algorithm to

compute e−βH/2|ψN 〉. The results of this algorithm are exact

to at least ten digits. For the propagation in real time, we

mostly use a unitary, second-order product formula algorithm

with a time step δt th = 0.02, which is sufficiently small

to guarantee that the total energy is conserved up to at

least six digits. Occasionally, we have used the Chebyshev

polynomial algorithm to compute the real-time evolution: No

significant differences between these and the product-formula

results were found. Most of the simulations were carried out

on JUQUEEN, the IBM Blue Gene/Q located at the Jülich

Supercomputer Centre. A simulation of the largest system

studied in the present paper (36 spins) required 3 TB of

memory, the computation was distributed over 131 072 (MPI)

processes, and the total elapsed time to carry out 400 times

steps was about 10 h (1.3 million core hours).

IV. RESULTS FOR THE HUBBARD MODEL

This section contains our results for the charge transport in

the 1D Hubbard model, focusing at half filling. We consider

infinite temperature β = 1/T → 0 unless stated otherwise.
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First, we discuss the overall time dependence of the current

autocorrelation function for various values of U/th. Second,

we extract the Drude weight D from the long-time behavior

of C(t). Finally, we discuss the frequency dependence of the

regular part and its zero-frequency limit.

A. Time dependence of autocorrelation functions

Figures 1(a)–1(c) show typical results for the real-time

decay of the current autocorrelation function C(t) for U/th =
4,8,16, respectively, and several system sizes L � 18. The

figures show C(t) for times up to t th � 8, where the dominant

decay of C(t) from its initial value occurs. Typically, the

data from these different L coincide for t th � 2.5. Beyond

t th = 2.5, C(t) is a monotonically decreasing function of

system size as indicated by the arrow in Fig. 1(b). The figures

further include real-time density matrix renormalization group

(tDMRG) data from [26] for comparison. Our DQT results are

in excellent agreement with the tDMRG data.

As U/th increases, C(t) approaches small values increas-

ingly faster as a function of time. On the other hand, the

larger U/th, the more high-frequent and pronounced are the

oscillations in C(t). These are inherited from the large U/th
limit, in which the spectrum consists of bands of eigenstates

0

0.4

C
(t

) 
/ 

t h2

0

0.4

C
(t

) 
/ 

t h2

0 8
t t

h

0

0.4

C
(t

) 
/ 

t h2

(b) U/t
h
=8

L=9,11,13,15,18

(a) U/t
h
=4

(c) U/t
h
=16

tDMRG

initial states (L=9)

FIG. 1. (Color online) Real-time decay of the current autocorre-

lation function C(t) for (a) U/th = 4, (b) U/th = 8, (c) U/th = 16

for various L = 9,11,13,15,18 and at infinite temperature β th → 0

(solid curves and circles). For the largest L = 15 and 18, convergence

to system-size independent values is reached at times t th ∼ 5. For

comparison, tDMRG data from [26] are included in (a) and (b)

(dashed curves). The inset in (a) shows the L = 9 result for two

different initial random states (solid curve, first state; squares, second

state), which demonstrates small statistical errors for this L already.

separated by gaps of order U . These bands correspond to

excitations with multiple doublons. Thus, the oscillatory

dynamics in C(t) at large U/th is quite similar to the behavior

in the spin-1/2 XXZ chain in the strong Ising limit [67] and

spin-1/2 XX ladders in the strong rung-coupling limit [47].

B. Drude weight

In order to extract the nondecaying portion of C(t), which

equals the Drude weight, much longer times than t th ∼ 12

need to be considered [33]. Therefore, we display C(t) for

t th � 25 in Fig. 2(a) for the example of U/th = 4,8,16

and for L = 15. At times t th � 10, the oscillations in C(t)

have decayed to a sufficiently small amplitude and hence

we estimate the Drude weight by averaging C(t) in the time

window t ∈ [t1 th = 12.5,t2 th = 25], yielding C̄(t1,t2). Note

that C̄(t1,t2) does not depend on this specific choice of t2 [see

the inset of Fig. 2(b)].

The resulting, L-dependent C̄(t1,t2) are shown in Fig. 2(b)

in a log-log plot. The system-size dependence of C̄(t1,t2) is

consistent with a 1/L decay of the Drude weight to zero as

system size increases. This scaling of D with system size is

typical for integrable systems: It has been observed for the spin

Drude weight of the spin-1/2 XXZ chain as well [29,30,32,33].

0 50t
2
 t

h

0

0.1

10
-1

10
0

10
1

t t
h

0

0.4

C
(t

) 
/ 

t h2

U/t
h
=4

U/t
h
=8

U/t
h
=16

8 9 10 15
L

0.1

0.2

0.3

C
(t

1
,t

2
) 

/ 
C

(0
)

[t
1
,t

2
]

(a) long times
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(b) Drude weight

(L=15)

U/t
h
=4,8,16 U/t

h
=16, L=16

FIG. 2. (Color online) (a) Long-time limit of the current auto-

correlation function C(t) for different U/th = 4,8,16, fixed L = 15,

and high temperatures β th → 0. (b) Finite-size scaling of the Drude

weight C̄(t1,t2), as extracted from the time interval [t1 th,t2 th] =
[12.5,25], in a log-log plot. As a guide to the eyes, power laws

(dashed lines) and a function ∝ 1/L (solid line) are indicated. The

inset in (b) shows, for U/th = 16 and L = 16, that C̄(t1,t2) does not

depend on the specific choice of t2.
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FIG. 3. (Color online) The same information as shown in

Fig. 2(b) but for fixed U/th = 8 and different β th = 0,0.1,0.5. Data

for β th = 0.0 and 0.1 almost coincide.

Moreover, the Drude weight approximately measures the fluc-

tuations of diagonal matrix elements of the associated current

operator [50]. Such system-size-dependent fluctuations are

commonly investigated to access the validity of the eigenstate

thermalization hypothesis [80–82]. For integrable systems,

most numerical studies indicate a slow, power-law decay

of these fluctuations [50,57,83]. Most notably, our data are

consistent with a vanishing Drude weight D = 0 at infinite

temperature, in agreement with [25].

In principle, if the infinite-temperature Drude weight

vanishes, this does not necessarily imply that D(T ) = 0 at

any finite T . To see this, one can write the Drude weight in a

high-temperature expansion,

D(T ) =
D1

T
+

D2

T 2
+ . . . , (25)

where D1 is the infinite-temperature Drude weight studied in

Fig. 2(b). To substantiate that in the Hubbard model at half

filling D(T ) = 0 at any finite T , we have also computed D(T )

at T/th = 2,10, where D also seems to vanish as L increases.

This is illustrated in Fig. 3.

C. Optical conductivity

Since the Drude weight appears to vanish as L → ∞, all

weight in Re σ (ω) will ultimately be in the regular part σreg(ω).

This optical conductivity has recently been studied using

tDMRG [26], where a finite dc conductivity was observed

that diverges as σdc ∼ 1/T as temperature decreases.

We here first demonstrate that it is indeed possible to extract

the dc conductivity from our time-dependent data for C(t). At

infinite temperature, the dc conductivity σdc/χ is simply equal

to the integral D(t) over C(t) as defined in Eq. (15), i.e.,

connected to the diffusion constant by an Einstein relation.

At large U/th, D increases quickly and then settles into a

plateau, as is evident from the example presented in Fig. 4(a).

At large times, D further increases, which is due to both the

nonzero Drude weight on finite systems and other finite-size

effects. Plotting data for D for several system sizes clearly

suggests that finite-size data gradually approach the plateau

value at longer times as well; see Fig. 4(a).

The presence of such a plateau, following the reasoning of

[64], suggests a finite dc conductivity and diffusion constant.
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"full-time FT"

FIG. 4. (Color online) (a) Time-dependent diffusion constant

D(t) for U/th = 16, various L = 9,11,13,15,16, and high temper-

atures β th → 0. A plateau is clearly visible at intermediate times

before the finite-size Drude weight yields a linear increase in the

long-time limit. The plateau height is independent of L and the plateau

width increases with L. (This behavior is almost identical to the XXZ

chain at � > 1.) (b) and (c) Frequency dependence of the optical

conductivity Re σ (ω), as resulting from tmax th = 4,100. (c) Does not

respect the “better” limit of L → ∞ first and tmax th → ∞ afterward.

Apparently, (c) shows strong finite-size effects at both ω = 0 and

ω �= 0. However, in the thermodynamic limit L → ∞, (c) seems to

approach (b).

As shown in Fig. 5, the diffusion constant exhibits a peculiar

behavior at T = ∞: As U/th increases, it saturates at a U -

independent value. This saturation results from the structure

of the energy spectrum in the large-U/th limit: It consists of

bands separated by U that have a band width given by th.

Since we are taking the limit U/th → ∞ after taking the limit

T → ∞, the dominant contribution to scattering comes from

interband processes. This behavior appears to be generic for

systems with an emergent ladderlike spectrum and has also

been observed in the Ising regime of spin-1/2 XXZ chains

[67] and in spin-1/2 XX ladders [47]. The independence of

the diffusion constant on U observed in Fig. 5 also unveils that

the lower bound of [45], as given in Eq. (5), is not exhaustive

in the large-U/th regime.

For the purpose of computing Re σ (ω), the existence of the

plateau implies that the asymptotic behavior has been reached.

Moreover, the value of the plateau in D(t) is independent of
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FIG. 5. (Color online) Time-dependent diffusion constant D(t)

for various U/th = 4,16,32,64, fixed L = 15, and high temperatures

β th → 0. Clearly, the plateau value of D(t) becomes independent of

U in the limit of large U .

system size for the parameters of Fig. 4. Thus, we will compare

two ways of computing Re σ (ω): (i) The first version uses the

full-time dependence of C(t), up to and including times where

we clearly observe finite-size effects (later dubbed full-time

FT); (ii) in the second, we restrict the time window for the

Fourier transformation to times at which we have system-size

independent data for C(t) (later referred to as L-independent

FT).

The results of both approaches are presented in Figs. 4(b)

and 4(c), respectively. The full-time FT resolves the strong

finite-size dependent structures that were known to exist from

Ref. [38]. The positions of these sharp peaks shift to smaller

frequencies as system size increases. An extrapolation of

σreg(ω) to zero frequency is thus difficult to control.

The behavior of σreg(ω) computed using the L-independent

FT strategy, by contrast, is a very smooth function that strongly

resembles the optical conductivity of a typical diffusive

system. This is clearly related to the fast initial decay of

C(t) [see the data shown in Fig. 1(b)], and the corresponding

establishment of the plateau in the integrated quantity D(t),

which consequently allows us to estimate the dc limit under

the assumption that no additional time dependence emerges in

C(t) at very long times and large systems. We thus propose

that whenever such a plateau is present in D(t), the cleanest

way of computing σreg(ω) is the L-independent FT, in line with

the reasoning of Refs. [64,67,84].

Figure 6 shows data for U/th = 4 as an example for a

case, in which no clear plateau in D(t) can be resolved with

the accessible system sizes. Here, we thus compute σreg(ω)

from the full available time series of C(t), which is shown in

Fig. 6(b). The optical conductivity has a broad maximum at

ω/th ∼ U/th and an additional low-frequency peak at ω/th ∼
1 whose position shifts to small frequencies as L increases. The

data would suggest a small or vanishing dc conductivity, which

we believe does not reflect the behavior of an infinitely large

system [compare Fig. 4(b)], since the low-frequency finite-size

effects likely screen the correct low-frequency dependence.

V. RESULTS FOR THE MASS-IMBALANCED CASE

In this section, we present our results for the mass-

imbalanced cases η = t↓/t↑ < 1, where the model is nonin-

tegrable. We start with the case η = 0, the Falicov-Kimball
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FIG. 6. (Color online) The same information as shown in Fig. 4,

yet here for U/th = 4. Extracting Re σ (ω) via the L-independent FT

strategy is not applicable here, since D(t) does not exhibit a clear

plateau [see (a)], due to the long-time tail in C(t). This plateau will

also not occur for L = 18. Thus, in (b), we present Re σ (ω) obtained

from a full-time FT, which thus results in strong finite-size effects at

small frequencies.

limit, and discuss the emergence of Anderson localization in

this limit. Then we turn to the case of η ∼ 1/2 and study both

Drude weight and optical conductivity. Finally, we summarize

the scaling of the diffusion constant as a function of η in the η

region accessible to our numerical method.

A. Falicov-Kimball limit

In the Falicov-Kimball limit η = 0 the model simplifies to

hl = −t↑(c
†
l,↑cl+1,↑ + H.c.)

+U

(

nl,↑ −
1

2

)(

nl,↓ −
1

2

)

. (26)

For this simplified model all nl,↓ commute with all local

Hamiltonians hl and with each other,

[hl,nk,↓] = [nl,↓,nk,↓] = 0, (27)

l,k = 1, . . . ,L. Each (nl,↓ − 1/2) is thus conserved and

yields a good quantum number ǫl = ±1/2, with 2L different

sequences,

ǫ(m) = (ǫ1(m), . . . ,ǫL(m)), (28)

m = 1, . . . ,2L. As a consequence, the full Hamiltonian H =
∑

l hl can be rewritten as a sum of 2L uncoupled Hamiltonians

H (m) =
∑

l hl(m), where

hl(m) = −t↑(c
†
l,↑cl+1,↑ + H.c.) + U ǫl(m)

(

nl,↑ −
1

2

)

, (29)

and the U part becomes a site-dependent potential given by

the sequence ǫ(m). For many m, ǫ(m) can be understood as a
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FIG. 7. (Color online) (a) Real-time decay of the current auto-

correlation function C↑(t) of the light ↑ component for U/t↑ = 4,

strong imbalance η = t↓/t↑ = 0, L = 9,11,15, and high temperatures

β t↑ → 0. Since C↑(t) is highly oscillating after the initial decay,

also the time-dependent diffusion constant D↑(t) does so in (b).

Consequently, the usual extraction of a diffusion constant would

depend on the specific point in time considered. However, the time

average still yields a reasonable diffusion constant. (c) Finite-size

scaling of the time average for U/t↑ = 4,8, as resulting from the

time interval [t1 t↑,t2 t↑] = [12.5,75], in a semi-log plot. Apparently,

the scaling is nontrivial, but the decrease is consistent with insulating

behavior in the thermodynamic limit L → ∞.

sequence of random numbers drawn from a binary distribution

[−1/2,1/2]. Therefore, remarkably, many uncoupled Hamil-

tonians H (m) can be interpreted also as the single-particle,

Anderson problem for on-site disorder of strength U . Note

that translation invariance is typically broken for a given m but

restored by sampling over m. Note further that all m contribute

at finite temperatures.

Due to the analogy to the single-particle, Anderson problem

and the strict one-dimensionality of the lattice, one expects

perfectly insulating behavior in the thermodynamic limit L →
∞ at all temperatures. Early on, this expectation has been

verified in numerical calculations of the optical conductivity

[85,86] for β t↑ > 0 and values of U where the localization

length does not exceed lattice sizes accessible. Yet, the high-

temperature limit β t↑ → 0 has not been studied.

In Fig. 7(a) we show our results for the time-dependent

current autocorrelation function C↑(t) for β t↑ → 0, U/t↑ =
4, and different L = 9,11,15. Clearly, C↑(t) decays rapidly

on a rather short time scale t t↑ ∼ 1. After this initial decay
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FIG. 8. (Color online) Frequency dependence of the optical con-

ductivity Re σ↑(ω) for (a) tmax t↑ = 25, (b) tmax t↑ = 50 for U/t↑ = 4,

strong imbalance η = t↓/t↑ = 0, different L = 11,13,15, and high

temperatures β t↑ → 0. (c) Shows (a) for U/t↑ = 8. The overall

structure is independent of tmax and L. For the dependence of the

dc limit Re σ↑(ω → 0) on L and tmax, see D̄↑(t1,t2) discussed before.

C↑(t) approaches zero from the negative side but still shows

small oscillations. Note that these oscillations are no finite-

size effects since curves for L = 11 and 15 are practically

identical to each other for the long times t t↑ ∼ 75 depicted

in the figure. This curve for C↑(t) yields the time-dependent

diffusion constant D↑(t) shown in Fig. 7(b). After the initial

increase ofD↑(t) we find a strong decrease related to the region

where C↑(t) is negative. Necessarily, D↑(t) also shows small

oscillations not related to finite-size effects, as evident from

comparing L = 11 and 15 again.

The long-time oscillations ofD↑(t) indicate that the dynam-

ical process cannot be described by a diffusion constant in the

strict sense. However, to extract an effective diffusion constant,

we average D↑(t) over the long-time interval [t1 t↑,t2 t↑] =
[12.5,75]. In Fig. 7(c) we depict the resulting D̄↑(t1,t2) as a

function of L for U/t↑ = 4,8 in a semi-log plot. Apparently,

this time-averaged quantity decreases as system size increases

and may eventually become zero in the thermodynamic limit

L → ∞. Note that the scaling for small L is partially related

to tiny finite-size Drude weights D↑, entering D↑(t) via the

relation D↑(t) ∝ D↑ t in the long-time limit.

Next we turn to the optical conductivity. Since C↑(t)

and D↑(t) do not become constant in the long-time limit,

the finite-time Fourier transform necessarily depends on the

specific time interval chosen. Thus, we show in Figs. 8(a) and

8(b) the Fourier transform of U/t↑ = 4 data for tmax t↑ = 25

and 50, where times t � tmax were considered in the Fourier
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FIG. 9. (Color online) Real-time decay of the current autocorre-

lation function Cσ (t) for (a) U/t↑ = 4, (b) U/t↑ = 8 for η = t↓/t↑ =
0.4, both components σ = ↑,↓, two L = 9,15, and high temperatures

β t↑ → 0. (c) Finite-size scaling of the Drude weight C̄σ (t1,t2), as

extracted from the time interval [t1 t↑,t2 t↑] = [25,50], in a semi-log

plot. As a guide to the eyes, exponentials (dashed lines) are indicated.

transformation. While Figs. 8(a) and 8(b) differ with respect

to details, the overall structure does not depend on the specific

choice of tmax. In particular, the limit ω → 0 is consistent with

a vanishing dc conductivity. Note that this limit coincides with

D↑(t) evaluated at t t↑ = 25 and 50, respectively. Similarly,

our results indicate a vanishing dc conductivity for U/t↑ = 8,

as shown in Fig. 8(c). The small negative spectral weight is an

artifact of the finite-time Fourier transform used and depends

on the specific choice of tmax.

To summarize, our β t↑ → 0 results are consistent with

the interpretation of the model in terms of the single-particle,

Anderson problem in one spatial dimension.

B. Intermediate imbalance

Next we discuss the region 0 < η < 1, where the model still

is nonintegrable but the interpretation of the model in terms

of the single-particle Anderson problem is not possible any

more. In fact, in this η region, we deal with a many-particle

problem.

We start with intermediate imbalance η = 0.4. In Fig. 9(a)

we depict our results for the time-dependent current autocor-

relation function Cσ (t) for the light (σ =↑) and the heavy

(σ =↓) component for U/t↑ = 4 and L = 9,15, still in the

high-temperature limit β t↑ → 0. In Fig. 9(b) we additionally

show results for U/t↑ = 8. For both components, Cσ (t) decays

fast on a time scale t t↑ ∼ 1 but revivals appear afterward.

While these revivals are equally pronounced for σ =↑ and ↓,

only C↑(t) becomes negative in the time interval t t↑ ∼ 2.5.

However, any revivals eventually disappear and Cσ (t) decays

fully to approximately zero for σ =↑ and ↓. When comparing

curves for L = 9 and 15, it is also evident that finite-size effects

are small on the physically relevant time scale. Thus, we are

able to obtain information on Cσ (t) in the thermodynamic limit

L → ∞ without invoking intricate extrapolations.

It is also evident from Figs. 9(a) and 9(b) that Drude weights

Dσ are small, i.e., there is no long-time saturation of Cσ (t) at a

significant positive value. However, it is instructive to discuss

the actual value of the Drude weights in more detail. In Fig. 9(c)

we show the finite-size scaling of C̄σ (t1,t2), as extracted

from the time interval [t1 t↑,t2 t↑] = [25,50], for σ =↑ , ↓ and

U/t↑ = 4,8 in a semi-log plot. Interestingly, C̄σ is larger for

σ =↓ and does not depend on U . In all cases, the finite-size

scaling of C̄σ is remarkably well described by a simple

exponential decrease over three orders of magnitude, with a

relative value C̄σ/Cσ (0) < 10−3 at L = 15. This exponential

decrease is expected for strongly nonintegrable models [47,56]

and, moreover, is in accord with the eigenstate thermalization

hypothesis [50,57].

Since finite-size effects are small and Cσ (t) decays to

approximately zero, we can accurately determine the optical

conductivity by Fourier transforming data for finite L and

t . In Figs. 10(a) and 10(b) we show the finite-time optical

conductivity Re σσ (ω) at U/t↑ = 8 for the light and heavy

component, respectively. As expected, Re σσ (ω) does neither

depend on tmax nor L and is a smooth function of frequency

ω. Similarly to the integrable case η = 0, we find a broad

maximum at ω/t↑ ∼ U/t↑ for both σ . In contrast, the position

of the additional peak at low ω depends on σ but is roughly

independent of U , as shown in Fig. 10(c). Most importantly,

the dc conductivity is finite and its actual value is, relative to the

amplitude of the low-ω peak, larger for the heavy component

σ =↓. As a function of U , this dc conductivity decreases but

is still finite for all U depicted; see Fig. 10(c). Therefore, at

η = 0.4, we can exclude the existence of an insulator in the

high-temperature limit β t↑ → 0.

C. Scaling of diffusion constant and dc conductivity

We eventually discuss the scaling of transport coefficients

as a function of imbalance η = t↓/t↑. For the η discussed

below, extracting the dc conductivity σσ,dc as Re σσ (ω → 0)

for finite L is equivalent to determining the plateau value of the

time-dependent diffusion constant Dσ (t). Therefore, we focus

on an analysis of Dσ (t), which can be concisely summarized

for various η.

In Fig. 11(a) we show the time-dependent diffusion constant

D↑(t) of the light component for different η = 0.7, . . . ,0.2, a

single U/t↑ = 8, and fixed system size L = 14. In Fig. 11(b)

we show D↓(t) of the heavy component for the same set of

parameters. Several comments are in order. First, for both

σ = ↑,↓, a plateau of Dσ (t) is clearly visible at times t t↑ ∼
15 for imbalances 0.3 � η � 0.6. We have checked that the

plateau values Dσ χ coincide with the dc conductivity σσ,dc,

cf. Fig. 10 for η = 0.4, even though not shown explicitly for all
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FIG. 10. (Color online) Frequency dependence of the optical

conductivity Re σσ (ω) for the (a) light component σ =↑, (b)

heavy component σ =↓ for U/t↑ = 8, η = t↓/t↑ = 0.4, and high

temperatures β t↑ → 0, as resulting from different L = 11,13,16 and

tmax t↑ = 10,20. The independence of L and tmax is evident. (c) U

dependence of Re σσ (ω) for a large L = 15 and long tmax t↑ = 20. A

peak at ω/t↑ = U/t↑ is clearly visible.

η. Second, for η > 0.6, Dσ (t) ∝ Dσ t due to strong finite-size

Drude weights Dσ in the vicinity of the integrable point η = 1;

cf. Fig. 6. These finite-size effects prevent us from determining

the diffusion constant in the thermodynamic limit L → ∞.

Third, for η < 0.3, D↑(t) of the light component develops

the small oscillations around zero discussed in the context of

the Falicov-Kimball limit η = 0. These oscillations prevent us

from determining the diffusion constant with sufficiently high

accuracy. Fourth, D↑(t) is much more sensitive to varying η

than D↓(t). Note, however, that we depict D↓(t)/t2
↓ rather than

D↓(t). In this way, we do not show the trivial scaling D↓(t) ∝
t2
↓ resulting from the static scaling of the current operator

j↓ ∝ t↓.

In Fig. 11(c) we depict the η dependence of the plateau

values Dσ , visible for L = 14, in a semi-log plot. While

we find D↓/t2
↓ ≈ const., we observe a decrease of D↑ as η

decreases, consistent with a simple exponential function. If

we assume that this scaling continues to small η beyond the η

range accessible, this assumption would imply the absence

of a diffusion-localization transition at η �= 0, consistent

with the conclusions of [63]. However, based on our results

in Fig. 11(c), we cannot exclude the onset of many-body

localization and a sudden drop of D↑ to zero at finite but

small η, as suggested in previous works [60,61]. Nevertheless,

0
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χ 
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β 
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0 30
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η
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D
σ

χ 
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t↓/t↑=0.7,...,0.2

(c) η scaling

(t t↑=15)

(a) σ=↑

(b) σ=↓

↑

↓

FIG. 11. (Color online) Time dependence of the diffusion con-

stant Dσ (t) for (a) σ =↑, (b) σ =↓ for various η = t↓/t↑ =
0.7, . . . ,0.2, a single U/t↑ = 8, fixed L = 14, and high temperature

β t↑ → 0. Apparently, D↑(t) is very sensitive to varying η, in contrast

to D↓(t). For imbalance η � 0.6, a plateau of Dσ (t) already can be

seen for the L depicted. (c) η scaling of the plateau value for both

components, as extracted at the point t t↑ = 15, in a semi-log plot. As

a guide to the eyes, an exponential (dashed line) is indicated. Note

that Dσ χ = σσ,dc.

we can constrain the existence of a possibly localized regime

to η ≪ 0.25.

VI. SUMMARY AND OUTLOOK

In this work we studied finite-temperature charge transport

in the one-dimensional repulsive Hubbard model at half

filling. Using the method of dynamical quantum typicality,

we were able to access system sizes much larger than what

can be reached with full exact diagonalization, and with no

restriction on the accessible time scales. This allowed us to

extract the finite-size dependent Drude weight from the time

dependence of current autocorrelation functions. The analysis

of the finite-size dependencies indicated a vanishing Drude

weight in the thermodynamic limit, in agreement with [25].

We further computed the optical conductivity and provided

evidence that it is (i) a smooth function of ω at low frequencies

and in the thermodynamic limit and (ii) that the dc conductivity

is indeed finite, the latter in agreement with [26].

As an example of a nonintegrable model, we considered

the mass-imbalanced Hubbard chain. This model has recently

been discussed in the context of many-body localization in
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translationally invariant systems [60,61,63]. We demonstrated

the absence of a Drude weight for large L, as expected for

a nonintegrable system. Our results for inverse mass ratios

of η � 0.25 indicated a small dc conductivity, that appears

to vanish exponentially fast as a function of decreasing η. At

intermediate η, the system is thus a normal diffusive conductor,

while at small η, the emergence of small long-time oscillations

in the current autocorrelation function give rise to slightly

anomalous transport, in line with the conclusions of Ref. [63].

Extensions of our work comprise the study of finite-

temperature charge and spin transport in one-dimensional

strongly correlated electron systems. For instance, there is an

intriguing prediction on the role of spin drag in one dimension,

which has been claimed to give rise to diffusive spin transport,

while charge transport remains ballistic at finite temperature

[87]. Such questions as well as other effects due to a coupling

of the various transport channels in the Hubbard model and its

variants constitute a rich playground for future work.
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[54] M. Žnidarič, Phys. Rev. Lett. 110, 070602 (2013).
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