000276188 001__ 276188
000276188 005__ 20240712101044.0
000276188 0247_ $$2doi$$a10.3402/tellusb.v67.27876
000276188 0247_ $$2ISSN$$a0280-6509
000276188 0247_ $$2ISSN$$a1600-0889
000276188 0247_ $$2Handle$$a2128/9452
000276188 0247_ $$2WOS$$aWOS:000362822200001
000276188 037__ $$aFZJ-2015-06653
000276188 041__ $$aEnglish
000276188 082__ $$a550
000276188 1001_ $$0P:(DE-HGF)0$$aBeswick, Karl$$b0
000276188 1112_ $$aMOZAIC-IAGOS 20th Anniversary Symposium
000276188 245__ $$aProperties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations
000276188 260__ $$aStockholm$$bInst.$$c2015
000276188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449148997_16142
000276188 3367_ $$2DataCite$$aOutput Types/Journal article
000276188 3367_ $$00$$2EndNote$$aJournal Article
000276188 3367_ $$2BibTeX$$aARTICLE
000276188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276188 3367_ $$2DRIVER$$aarticle
000276188 520__ $$aMeasurements of cloud ice crystal size distributions have been made by a backscatter cloud probe (BCP) mounted on five commercial airliners flying international routes that cross five continents. Bulk cloud parameters were also derived from the size distributions. As of 31 December 2014, a total of 4399 flights had accumulated data from 665 hours in more than 19 000 cirrus clouds larger than 5 km in length. The BCP measures the equivalent optical diameter (EOD) of individual crystals in the 5–90 µm range from which size distributions are derived and recorded every 4 seconds. The cirrus cloud property database, an ongoing development stemming from these measurements, registers the total crystal number and mass concentration, effective and median volume diameters and extinction coefficients derived from the size distribution. This information is accompanied by the environmental temperature, pressure, aircraft position, date and time of each sample. The seasonal variations of the cirrus cloud properties measured from 2012 to 2014 are determined for six geographic regions in the tropics and extratropics. Number concentrations range from a few per litre for thin cirrus to several hundreds of thousands for heavy cirrus. Temperatures range from 205 to 250 K and effective radii from 12 to 20 µm. A comparison of the regional and seasonal number and mass size distributions, and the bulk microphysical properties derived from them, demonstrates that cirrus properties cannot be easily parameterised by temperature or by latitude. The seasonal changes in the size distributions from the extratropical Atlantic and Eurasian air routes are distinctly different, showing shifts from mono-modal to bi-modal spectra out of phase with one another. This phase difference may be linked to the timing of deep convection and cold fronts that lead to the cirrus formation. Likewise, the size spectra of cirrus over the tropical Atlantic and Eastern Brazil differ from each other although they were measured in adjoining regions. The cirrus crystals in the maritime continental tropical region over Malaysia form tri-modal spectra that are not found in any of the other regions measured by the IAGOS aircraft so far, a feature that is possibly linked to biomass burning or dust. Frequent measurements of ice crystal concentrations greater than 1×105 L−1, often accompanied by anomalously warm temperature and erratic airspeed readings, suggest that aircraft often experience conditions that affect their sensors. This new instrument, if used operationally, has the potential of providing real-time and valuable information to assist in flight operations as well as providing real-time information for along-track nowcasting.
000276188 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000276188 536__ $$0G:(DE-82)BMBF-20180331-IAGOSD$$aIAGOS-D - In-Service Aircraft for a Global Observing System – German Contribution to the Main Phase of IAGOS (BMBF-20180331-IAGOSD)$$cBMBF-20180331-IAGOSD$$x1
000276188 588__ $$aDataset connected to CrossRef
000276188 7001_ $$0P:(DE-HGF)0$$aBaumgardner, Darrel$$b1$$eCorresponding author
000276188 7001_ $$0P:(DE-HGF)0$$aGallagher, Martin$$b2
000276188 7001_ $$0P:(DE-HGF)0$$aRaga, Graciela B.$$b3
000276188 7001_ $$0P:(DE-HGF)0$$aMinnis, Patrick$$b4
000276188 7001_ $$0P:(DE-HGF)0$$aSpangenberg, Douglas A.$$b5
000276188 7001_ $$0P:(DE-Juel1)6742$$aVolz-Thomas, Andreas$$b6
000276188 7001_ $$0P:(DE-HGF)0$$aNedelec, Philippe$$b7
000276188 7001_ $$0P:(DE-HGF)0$$aWang, Kuo-Ying$$b8
000276188 773__ $$0PERI:(DE-600)2026992-4$$a10.3402/tellusb.v67.27876$$gVol. 67, no. 0$$n0$$p27876, 1-22$$tTellus / B$$v67$$x1600-0889$$y2015
000276188 8564_ $$uhttp://www.tellusb.net/index.php/tellusb/article/view/27876
000276188 8564_ $$uhttps://juser.fz-juelich.de/record/276188/files/27876-174774-1-PB.pdf$$yOpenAccess
000276188 8564_ $$uhttps://juser.fz-juelich.de/record/276188/files/27876-174774-1-PB.gif?subformat=icon$$xicon$$yOpenAccess
000276188 8564_ $$uhttps://juser.fz-juelich.de/record/276188/files/27876-174774-1-PB.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000276188 8564_ $$uhttps://juser.fz-juelich.de/record/276188/files/27876-174774-1-PB.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000276188 8564_ $$uhttps://juser.fz-juelich.de/record/276188/files/27876-174774-1-PB.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000276188 8564_ $$uhttps://juser.fz-juelich.de/record/276188/files/27876-174774-1-PB.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276188 909CO $$ooai:juser.fz-juelich.de:276188$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire$$qec_fundedresources
000276188 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276188 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000276188 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTELLUS B : 2014
000276188 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000276188 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000276188 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276188 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276188 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000276188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276188 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276188 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000276188 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000276188 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276188 9141_ $$y2015
000276188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6742$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000276188 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000276188 920__ $$lyes
000276188 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000276188 9801_ $$aFullTexts
000276188 980__ $$ajournal
000276188 980__ $$aVDB
000276188 980__ $$aI:(DE-Juel1)IEK-8-20101013
000276188 980__ $$aUNRESTRICTED
000276188 981__ $$aI:(DE-Juel1)ICE-3-20101013