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We present an ab initio analysis of a continuous Hamiltonian that maps into the celebrated Haldane model.

The tunneling coefficients of the tight-binding model are computed by means of two independent methods—one

based on the maximally localized Wannier functions, and the other through analytic expressions in terms of

gauge-invariant properties of the spectrum—that provide a remarkable agreement and allow one to accurately

reproduce the exact spectrum of the continuous Hamiltonian. By combining these results with the numerical

calculation of the Chern number, we are able to draw the phase diagram in terms of the physical parameters of the

microscopic model. Remarkably, we find that only a small fraction of the original phase diagram of the Haldane

model can be accessed, and that the topological insulator phase is suppressed in the deep tight-binding regime.
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I. INTRODUCTION

The Haldane model [1] is a celebrated lattice model

describing a Chern insulator [2], characterized by the presence

of quantum Hall effect [3] in the absence of a macroscopic

magnetic field. Conceptually, the Haldane model stands at the

heart of the tremendous advances in the field of topological

condensed matter physics, as the mechanism for a nontrivial

band topology presented by Haldane is realized in actual

materials via the intrinsic spin-orbit interaction of topological

insulators [4,5]. These concepts are also relevant for the

physics of ultracold atoms in optical lattices, as these sys-

tems represent a powerful platform for simulating solid-state

physics [6]. Mott insulators [7,8], bosonic superfluids [9],

or graphenelike honeycomb lattices [10–16] are among the

many systems that have been emulated by this technique.

Interestingly, an effective experimental realization of the

Haldane model has been recently reported in Ref. [17].

In his original work, Haldane constructed a discrete tight-

binding model for a noncentrosymmetric honeycomb lattice

in the presence of a vector potential A(r), with vanishing total

flux through the unit cell. The key feature of the model is

that, even in absence of a macroscopic magnetic field, the

time-reversal symmetry is broken due to the presence of the

gauge field A(r). This, in turn, implies that the next-to-nearest-

neighbor tunneling coefficient t1 becomes a complex number.

Haldane showed that the properties of the system depend on

the interplay between the phase acquired by t1 and the effect

of parity breaking, affecting the topological phase diagram of

the model [1].

Considering the above, the knowledge of the dependence

of the phase acquired by t1 on the applied vector potential

field becomes a crucial element for drawing the topological

phase diagram. For this purpose, it is common practice [1,18]

to make use of the so-called Peierls substitution, whereby the

effect of A(r) is effectively included by the replacement t1 →
t1 exp [i(e/�)

∫

A(r)d r] [19]. However, in a recent work [20]

we showed that the Peierls substitution is actually wrong

whenever the vector field A(r) has the same periodicity of

the underlying lattice, as is the case of the Haldane model

by construction. In that work, we analyzed the parity invariant

case by presenting two independent approaches for calculating

the tight-binding parameters of the model: one based on the

maximally localized Wannier functions (MLWFs), and the

other on a closed set of analytical expressions in terms of

the energy spectrum at selected high symmetry points in the

Brillouin zone (BZ).
In the present work, we extend the previous analysis to

the general case in which both inversion and time-reversal
symmetry can be broken. We show that the two approaches
considered provide remarkable agreement even in the presence
of parity breaking, allowing for a precise determination of the
tight-binding parameters of the model. By combining these
results with the numerical calculation of the Chern number,
we are able to redraw the topological phase diagram of the
Haldane model in terms of the physical parameters of the
microscopic model. Interestingly, we find that only a small
fraction of the original phase diagram can be accessed, and
that the topological insulator phase shrinks dramatically as the
system becomes more and more tight binding. In addition, we
find that the gap closing at the topological phase transition does
not take place exactly at one of the high symmetry points of
the BZ, but in a close-by point. The reason is that the complex
tunneling between homologous sites is no longer degenerate
in the presence of parity breaking, contrary to what is assumed
in the Haldane model.

The paper is organized as follows. In Sec. II we introduce

the microscopic continuous Hamiltonian used in this work and

review the formal steps needed to derive the corresponding

tight-binding model. Some general properties of the Haldane

model are also recalled. Then, in Sec. III we present the

two approaches employed for calculating the tight-binding

parameters, and discuss how the breaking of time-reversal

and/or parity affects their behavior. In Sec. IV we analyze the
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topological phase diagram, both in terms of the parameters of

the tight-binding model and of the physical ones. Concluding

remarks are drawn in Sec. V. Finally, in the appendices

we present an analysis of the spread functional of the

MLWFs (Appendix A) and additional remarks on the numerics

(Appendix B).

II. SETUP OF THE HALDANE MODEL

In this section we present a systematic derivation of the

Haldane model starting from the continuous Hamiltonian

proposed by Shao et al. [18] in the context of cold atoms

trapped in optical lattices (see also [20]). The method discussed

here is general and suited to map a generic continuous

Hamiltonian to its corresponding tight-binding model [21,22].

A. The continuous Hamiltonian

The general form of a continuous Hamiltonian in the

presence of a scalar lattice potential VL(r) and a vector

potential A(r) is

H0 =
1

2m
[ p − A(r)]2 + VL(r), (1)

with r = (x,y) in case of a two-dimensional system, as we

shall consider here. The potential VL(r) is chosen in order to

generate a periodic structure with two minima per unit cell,

forming a honeycomb lattice [10,18]:

VL(r) = 2sER

{

cos[(b1 − b2) · r]

+ cos

(

b1 · r −
π

3
χA

)

+ cos(b2 · r)

}

. (2)

Above, ER = �
2k2

L/2m is the recoil energy, kL denotes the

laser wave vector, s is a dimensionless parameter repre-

senting the strength of the potential in units of ER , b1,2 =
(
√

3kL/2)(ex∓
√

3ey) are the basis vectors in the reciprocal

k space, and χA is a parameter related to the breaking of

the parity symmetry. In particular, χA = 0 corresponds to the

inversion symmetric case, where the two minima in the unit

cell are degenerate. On the other hand, for χA �= 0 parity is

broken and the minima are no longer degenerate. The unit

cell (shown in Fig. 1) is generated by the direct lattice vectors

a1,2 = (2π/3kL)(ex∓
√

3ey). We also define the lattice vector

a3 = a1 + a2, which will be useful later on.

We now turn to the vector potential contained in the

Hamiltonian (1). As already mentioned, we employ the form

proposed by Shao et al [18], namely,

A(r) = α�kL

[{

sin[(b2−b1) · r]+
1

2

2
∑

i=1

(−1)i sin(bi · r)

}

ex

−
√

3

2

2
∑

i=1

sin(bi · r)ey

]

, (3)

with ∇ · A(r) = 0 (Coulomb gauge). The flux of the corre-

sponding magnetic field B = ∇ × A across the unit cell is

null [18], as required for the Haldane model. In the following

analysis, the only variable parameter entering the expression

for the vector potential A(r) is its amplitude α. Notice that for

FIG. 1. (Color online) Bravais lattice associated to the honey-

comb potential in Eq. (2). Black and white circles refer to minima

of type A and B, respectively. The elementary cell is highlighted

in gray. The various tunneling coefficients are indicated for the site

of type A in the central cell. The system is invariant under discrete

translations generated by the Bravais vectors a1/2 and under rotations

of θ = 2π/3 radians around any vertex of the lattice. The rotational

symmetry implies that next-to-nearest tunneling amplitudes t1 along

the same direction are conjugate pairs (solid and dashed lines in red);

from the latter follows the equivalence of the hopping amplitudes

separated by 2π/3 radians. When sites A and B are degenerate, the

system is also invariant under rotations by π radians around the center

of any elementary cell.

α = 0 the system is symmetric under time reversal, whereas

this is not the case for α �= 0.

B. The tight-binding model

The continuous Hamiltonian (1) can be mapped onto the

tight-binding Haldane model [1,18] by following the general

procedure discussed in [20–22]. The starting point is the (single

particle) many-body Hamiltonian defined by

Ĥ0 =
∫

d r ψ̂†(r)Ĥ0ψ̂(r), (4)

with ψ̂ a field operator for bosonic or fermionic particles.

Then, when the wells of the lattice potential are deep enough,

the field operator can be conveniently expanded in terms of a

set of functions w jν(r) localized at each minimum:

ψ̂(r) ≡
∑

jν

â jνw jν(r). (5)

Above, ν is a band index and â
†
jν (â jν) is the creation

(destruction) operator of a single particle in the j th cell,

satisfying the usual commutation (or anticommutation) rules

following from those of the field ψ̂ .

As already mentioned in the Introduction, we shall use the

MLWFs for composite energy bands [23] as basis functions.

The MLWFs are defined as linear combinations of the Bloch

eigenstates ψν ′k(r),

w jν(r) =
1

√
SB

∫

SB

dk e−ik·R j

N
∑

ν ′=1

Uνν ′ (k)ψν ′k(r), (6)

where SB represents the volume of the first BZ, and U ∈
U (N ) is a gauge transformation that is obtained from the

minimization of the Marzari-Vanderbilt spread functional,
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� =
∑

ν[〈r2〉ν − 〈r〉2
ν] [23]. We remark that the presence of

the vector potential may significantly affect both the Bloch

eigenfunctions ψν ′k(r) and the unitary matrices Uνν ′ (k) [20].

A thorough analysis of the MLWFs is given in Sec. III A.

In the following, we shall consider the contribution of

the first two Bloch bands only, namely, ν,ν ′ = 1,2. This is

sufficient for constructing the lowest lying MLWFs localized

at the two lattice sites A and B inside the unit cell. Then, by

considering the following transformation from coordinate to

reciprocal space, b̂νk = (1/
√

SB)
∑

j e−ik·R j â jν , the reduced

tight-binding Hamiltonian can be written as

Ĥtb
0 ≡

∑

νν ′=A,B

∫

SB

dk hνν ′(k)b̂
†

νkb̂ν ′k, (7)

where the 2 × 2 matrix hνν ′ (k) is given by

hνν ′ (k) =
∑

j

eik·R j 〈w0ν |Ĥ0|w jν ′〉

=
1

SB

∑

j

∫

SB

dq ei(k−q)·R j

∑

n

U ∗
νn(q)Uν ′n(q)ǫn(q),

(8)

with R j = {j1a1 + j2a2|j1,j2 = 0,±1,±2 . . . } and j labels

the unit cell. We remark that the eigenvalues of hνν ′ (k)

coincide with the exact Bloch energies ǫn(k) (n = 1,2) if

the full expansion of neighboring coefficients R j is retained.

When the system is in the tight-binding regime (s � 5) [21],

it is convenient to truncate the series by retaining only a

finite number of matrix elements 〈w0ν |Ĥ0|w jν ′〉, with the

eigenvalues of hνν ′ (k) still being a good approximation of

the exact energies. We note that since the functions w jν(r) are

in general complex (see Sec. III A), we may expect the matrix

elements to be complex as well.

By truncating the tight-binding expansion in Eq. (8) to the

next-to-nearest neighbors (see Fig. 1), the matrix hνν ′ (k) can

be written as the sum of three terms:

hνν ′ (k) =
[

h
(0)
νν ′(k) + h

(2)
νν ′(k)

]

δνν ′ + h
(1)
νν ′ (k). (9)

The first term corresponds to the on-site energies

h(0)
νν (k) ≡ Eν = 〈w0ν |Ĥ0|w0ν〉, (10)

which are real quantities by definition. The next term, h
(1)
νν ′ ,

contains only off-diagonal elements corresponding to the

hopping between the three nearest-neighbor sites. Although

the basis functions w jν(r) are complex, these three tunneling

amplitudes can be chosen to be real by means of a suitable

global gauge fixing, as they are all equal thanks to the

symmetries of the system (see Fig. 1). Taking this into

consideration, and defining

t0 ≡ 〈w0A|Ĥ0|w0B〉, (11)

we can write

h
(1)
AB(k) = t0(1 + eik·a1 + e−ik·a2 ) ≡ t0Z0(k) ≡ z(k). (12)

Its conjugate counterpart is given by h
(1)
BA(k) = z∗(k). Finally,

the term h(2)
νν (k) corresponds to the six next-to-nearest-

neighbors hopping between homologous sites. By taking into

account all the symmetries of the full Hamiltonian of Eq. (1),

these tunneling coefficients can be compactly written as

t±1ν = 〈w0ν |Ĥ0

∣

∣w±a j ν

〉

≡ |t1ν |e±iϕν , j = 1,2,3. (13)

The above equation explicitly shows that t±1ν contains two

distinct complex phases ±ϕν for each site type (ν = A,B).

Then, using Eq. (13) and after some algebra, we can write

h(2)
νν (k) = |t1ν |

{

2 cos[k·a3 + ϕν] + 2
∑

i=1,2

cos(k·ai − ϕν)

}

≡ |t1ν |Fν(k) ≡ fν(k). (14)

The above expressions allow one to cast the matrix hνν ′(k)

in the following compact form:

hνν ′ (k) =
(

ǫA(k) z(k)

z∗(k) ǫB(k)

)

, (15)

where we have defined

ǫν(k) = Eν + fν(k). (16)

By expanding the Hamiltonian on the basis of the 2 × 2

identity matrix, I , and of the Pauli matrices, σi , Eq. (15) can

be rewritten as [18]

h(k) = h0(k)I +
3

∑

i=1

hi(k)σi, (17)

where the coefficients hi(k) are given by the following

expressions:

h0(k) =
ǫA(k) + ǫB(k)

2
=

fA(k) + fB(k)

2

≡ f+(k), (18)

h1(k) = Re[z(k)] = t0

3
∑

i=1

cos(k · si), (19)

h2(k) = −Im[z(k)] = t0

3
∑

i=1

sin(k · si), (20)

h3(k) =
ǫA(k) − ǫB(k)

2
= ǫ +

fA(k) − fB(k)

2

≡ ǫ + f−(k), (21)

with the vectors si being those joining the three nearest

neighbors of type A (B) to a given site of type B (A) [18].

In the last expression we have also fixed, without loss of

generality, EA = ǫ and EB = −ǫ.

Then, the tight-binding energies are readily found as

ǫ±(k) = h0(k) ± |h(k)| = f+(k) ±
√

[ǫ + f−(k)]2 + |z(k)|2,
(22)

where h ≡ (h1,h2,h3).

1. The Haldane model and the Peierls substitution

At this point, further approximations are required in order to

recover the original model proposed by Haldane [1], namely,

|t1A| = |t1B | ≡ |t1| and ϕA = −ϕB ≡ ϕ. We shall refer to

this configuration as the “simplified parameter setup” (SPS).

We note that the corresponding model contains only four
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parameters, namely, ǫ, t0, |t1|, and ϕ. In Sec. III C, we shall

provide numerical evidence showing that in the tight-binding

regime the difference between |t1A| and |t1B | is negligible,

thus justifying the SPS. The second condition is not strictly

verified (again, see Sec. III C), but one can consider a sort of

effective model by defining a single phase, ϕ ≡ (ϕA − ϕB)/2.

Therefore, in the SPS the terms h0 and h3 of Eqs. (18) and (21)

simplify to

h0 = 2|t1| cos ϕ

3
∑

i=1

sin(k · ai),

(23)

h3 = ǫ − 2|t1| sin ϕ

3
∑

i=1

sin(k · ai).

The above equations, together with Eqs. (19) and (20),

correspond to the definition of the original Haldane model

(see [1,18]).

As already mentioned in the Introduction, the original

model proposed by Haldane is constructed by means of the

so-called Peierls substitution [1,18]. This consists in assuming

that the complex phase of the tunneling coefficient tij is given

by the integral of the vector potential along the straight path

joining sites i and j , i.e., tij → tij exp{i(e/�)
∫ j

i
A d r}. In

the present case, the Peierls prediction for the complex phase

would be [18]

ϕP =
2π
√

3
α. (24)

This value will be used later on, in Secs. III and IV, for

comparison with the results of the two approaches discussed in

this paper. Here, we can anticipate—as thoroughly discussed

in [20]—that the above result is definitely incorrect, owing

to the fact that the Peierls substitution is justified only when

the vector field A(r) is slowly varying on the scale of the

lattice [24]. In fact, this condition is explicitly violated in

the Haldane model, where A(r) has the same periodicity of

the lattice.

C. General features of the Haldane model

Before proceeding, let us recall some general features of the

Haldane model [1], corresponding to the SPS approximation.

This model is characterized by the presence of Dirac points

located at the vertices kD of the first BZ, where the dispersion

law takes the relativistic form ǫ(k) =
√

m2c4 + c2k2. They

can be divided into two inequivalent classes, corresponding,

e.g., to k±
D = ±(1,0)kL (often referred to in the literature as

K and K ′; in the following, we will always refer to these two

as inequivalent Dirac points, for simplicity). In the presence

of time-reversal and inversion symmetry (namely, for α = 0,

χA = 0), the two energy bands become degenerate at the Dirac

points, whose position is given by the solution of z(kD) = 0

or h1(kD) = h2(kD) = 0 (this holds at any order of the tight-

binding expansion). In fact, in this case both ǫ and ϕ vanish,

yielding h3(k) = 0, fA = fB , and f− = 0, so that the energies

ǫ±(kD) are degenerate.

When both time-reversal and inversion symmetry are

broken (α �= 0, χA �= 0), two inequivalent energy gaps form

at the Dirac points:

δ± ≡ ǫ+(k±
D) − ǫ−(k±

D) = 2|h3(k±
D)| = 2

√

[ǫ + f−(k±
D)]2.

(25)

The closure of one of them indicates a topological phase

transition, where

δ± ≡ 2|ǫ ± 3
√

3|t1| sin ϕ| = 0. (26)

This equation identifies the well-known boundary between the

normal and topological insulator phases with Chern numbers

C = 0 and C = ±1 in the Haldane model [1].

We remark that in the general model the gap closing does

not take place exactly at k±
D , but in a close-by point. This

is due to the fact that, when breaking of parity is included

self-consistently, the tunneling parameters t1A and t1B are no

longer degenerate, contrary to what is assumed in the Haldane

model (cf. the SPS approximation).

III. CALCULATION OF THE TIGHT-BINDING

PARAMETERS

In this section we discuss two independent methods for

calculating the tight-binding parameters for arbitrary values

of the physical parameters s, α, and χA. The first method

is based on the ab initio calculation of the MLWFs [23,25],

which we already employed in [20–22] in different lattice

geometries. This approach gives direct access to the whole

set of parameters ǫ, t0, |t1A|, |t1B |, ϕA, and ϕB . The second

approach relies instead on analytical expressions in terms of

the energy spectrum, as discussed in [20]. The latter is here

extended to the case of parity breaking.

We remark that the approach based on the MLWFs

corresponds to the ab initio definition of the parameters, and

is therefore model independent. Instead, the second method

depends on the specific form of the tight-binding Hamiltonian.

However, it does not require the calculation of any set of

Wannier functions since only the spectrum of the continuous

Hamiltonian is needed. Notably, the two methods present

remarkable agreement in the whole range of parameters

considered here.

A. Maximally localized Wannier functions

The MLWFs, which have been defined in Eq. (6), represent

a powerful tool that is largely employed in condensed matter

physics [25]. By construction, the MLWFs are the basis

functions with the maximal degree of localization in coordinate

space, allowing one to construct tight-binding models that

accurately reproduce the properties of the continuous Hamilto-

nian, with a minimal set of tunneling coefficients. In addition,

the MLWFs permit a very fine sampling of the reciprocal space

thanks to the so-called Wannier interpolation technique [25].

This point is very important for our purposes in this work, as

the determination of the Chern number requires a high density

of points in k space [26,27].

The MLWFs are computed by means of the standard

implementation of the WANNIER90 package [28] (see also

Appendix B). The resulting functions are complex valued

when α �= 0. This feature is in agreement with the analysis

of [29], where it was shown that, in general, MLWFs cannot be
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FIG. 2. (Color online) Density plot (in logarithmic scale) of the

square of the real (a) and imaginary (b) parts of the MLWF for

sublattice A, for s = 5, α = 0.1, and χA = 0. The solid and dashed

lines denote the unit cell and the honeycomb lattice of the scalar

potential, respectively. In the latter, the corners of the hexagons mark

the minima of the scalar lattice potential labeled either as A or B.

constructed as real functions when the time-reversal symmetry

is broken (see also [30]). In the context of the Haldane

model, the imaginary part of the MLWFs plays an essential

role, since it determines the complex phase acquired by the

next-to-nearest tunneling coefficient. In turn, the complex

phase directly affects physically meaningful quantities, such

as the spectrum or the topological phase diagram [1].

In Fig. 2 we illustrate an example of the real-space structure

(note the logarithmic scale) of the real and imaginary parts

of a MLWF for sublattice ν = A, located at the origin

j = 0, for s = 5, α = 0.1, and χA = 0. The structure of the

real part is very similar to the one in the pure honeycomb

lattice [21], namely, it is highly localized around the origin,

with appreciable contribution around the neighboring lattice

sites. In average, the imaginary part is two to three orders

of magnitude smaller than the real part. It is particularly

interesting to observe that the imaginary part is null at the

interstitial region between nearest neighbors, while it becomes

maximum along the path joining next-to-nearest neighbors.

These properties hold in the whole range of parameters

considered in this work.

An analysis of the spread functional of the MLWFs as a

function of the vector potential amplitude has been included

in Appendix A.

B. Analytical expressions from the spectrum

In this section we derive a closed set of analytical

expressions in terms of the energy spectrum at selected high

symmetry points in the BZ. This is done in the framework of

the SPS discussed in Sec. II B 1, corresponding to the standard

formulation of the Haldane model [1,18]. As we shall see

below, the approximations of the SPS are well justified in the

tight-binding regime. The model is therefore given in terms

of four parameters, namely, ǫ, ϕ, t0, and |t1|. We remind one

that ǫ measures the difference between the on-site energies

EA and EB , and it is therefore associated to the breaking of

parity, whereas the breaking of the time-reversal symmetry

corresponds to ϕ different from zero. It is also worth recalling

that the parameters of the underlying continuous Hamiltonian

that control the breaking of parity and time-reversal symmetry

are χA and α, respectively. In particular, χA = 0 gives ǫ = 0,

whereas α = 0 implies ϕ = 0.

We begin by noting the following relations at k = 0:

f+(0) = 6|t1| cos ϕ, (27)

f−(0) = 0, (28)

|z(0)| = 3|t0|. (29)

Similarly, at the Dirac points k±
D we have

f+(k±
D) = −3|t1| cos ϕ, (30)

f−(k±
D) = ±3

√
3|t1| sin ϕ, (31)

z(k±
D) = 0. (32)

Next, let us define the bandwidths


±
+ = +[ǫ+(0) − ǫ+(k±

D)], (33)


±
− = −[ǫ−(0) − ǫ−(k±

D)]. (34)

Recalling the expression for the gap at the Dirac points in

Eq. (26), one can easily derive the following relations:

√

ǫ2 + 9t2
0 =


+
+ + 
+

− + δ+

2
=


−
+ + 
−

− + δ−

2
, (35)

18|t1| cos ϕ = 
+
+ − 
+

− = 
−
+ − 
−

−. (36)

Due to the symmetries of the system, we can consider ǫ � 0

and ϕ � 0 without loss of generality. Focusing first on the

region with ǫ > 3
√

3|t1| sin ϕ (corresponding to the normal

insulator phase), after some algebra one finds the following
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set of formulas:

ǫ =
δ+ + δ−

4
, (37)

t0 =
1

6

√

(
+
+ + 
+

− + δ+)2 −
(δ+ + δ−)2

4
, (38)

|t1| =
1

18

√

(
+
+ − 
+

−)2 +
3

4
(δ+ − δ−)2, (39)

ϕ = tg−1

[

√
3

2

δ+ − δ−


+
+ − 
+

−

]

. (40)

Similarly, in the region with ǫ < 3
√

3|t1| sin ϕ (corresponding

to the topological insulator phase), we find the following

expressions:

ǫ =
δ+ − δ−

4
, (41)

t0 =
1

6

√

(
+
+ + 
+

− + δ+)2 −
(δ+ − δ−)2

4
, (42)

|t1| =
1

18

√

(
+
+ − 
+

−)2 +
3

4
(δ+ + δ−)2, (43)

ϕ = tg−1

[

√
3

2

δ+ + δ−


+
+ − 
+

−

]

. (44)

The solutions in a generic case with ǫ < 0 or ϕ < 0 can be

obtained from symmetry considerations, by exchanging the

role of the two basis points A,B and/or of the two inequivalent

Dirac points k±
D .

C. Numerical results

In this section we present a comparison of the two methods

described in Secs. III A and III B for the calculation of the

tight-binding parameters. In addition, we also analyze the

accuracy of the assumptions of the SPS (Sec. III B) based

on the tunneling coefficients extracted from the MLWFs.

Let us begin by analyzing Fig. 3, where we compare the

tunneling coefficients calculated from the MLWFs with those

calculated from the analytical formulas of Eqs. (37)–(40), valid

for the normal insulator regime, and Eqs. (41)–(44), valid

for the topological insulator regime, which is depicted by

the gray shaded area in the figure. Results are shown as a

function of α for fixed values s = 5 and χA = 0.001, since

essential features are unaffected by s and χA. In the case of the

MLWFs, we have plotted the averages ϕ = (ϕA − ϕB)/2 and

|t1| = (|t1A| + |t1B |)/2 in order to allow comparison with the

analytical formulas, which have been derived in the context of

the SPS (see Sec. III B)

Overall, Fig. 3 shows very good agreement between

the two methods for all the tunneling coefficients, in all

regimes. Furthermore, it is interesting to note that the two

different solutions represented by the set of Eqs. (37)–(40) and

(41)–(44) exchange roles at the boundaries between normal

and topological insulator regimes; this feature is particularly

noticeable in Figs. 3(a) and 3(d). In other words, the solution

FIG. 3. (Color online) Comparison of the four tight-binding co-

efficients as calculated from the MLWFs (solid red lines) and the

analytical formulas of Eqs. (37)–(40) (blue triangles) and Eqs. (41)–

(44) (green circles). Results are shown as a function of α, keeping

fixed values s = 5 and χA = 0.001. The gray area in the figures

denotes the region where the system behaves as a topological insulator

with C �= 0 (see text and Sec. IV).

of one set of equations on one side represents a smooth

continuation of the solution of the other set of equations in

the other side, and vice versa. Provided that one chooses

the right solution, the calculated values agree very well with

those of the MLWFs, as already said. In addition, Fig. 3(d)

reveals an extremely important feature that was absent in

the original Haldane model: the phase ϕ is limited by a

maximal value. This behavior, which was already found in

the parity-symmetric case [20], implies that ϕ can only access

a restricted range of values, therefore limiting the physically

accessible region of the phase diagram. This feature will be

crucial for the analysis presented in the next section, where

we shall redraw the topological phase diagram in terms of

the physical parameters—α, χA, and s—of the underlying

continuous Hamiltonian.
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FIG. 4. (Color online) Relative deviations from the average val-

ues of (a) the phase, 1 − ϕA,B/ϕ, and (b) the magnitude of the

next-to-nearest tunneling coefficient, 1 − |t1A,B |/|t1|, for χA = 0.001,

s = 5. Results calculated using the MLWFs.

Next, we proceed to test the accuracy of the assumptions of

the SPS approximation (Sec. III B) based on the tunneling

coefficients calculated from the MLWFs. This is done in

Fig. 4, where we compare the relative deviations from the

average values of the phase, 1 − ϕA,B/ϕ, and of the magnitude

of the next-to-nearest tunneling coefficient, 1 − |t1A,B |/|t1|,
for χA = 0.001, s = 5. This figure demonstrates that the

maximum relative deviation in both cases is below ∼1%.

We have verified that this holds for all values of s and χA

considered here, thus justifying the assumptions of the SPS

approximation in the whole range of parameters. Apart from

the relative deviation, Fig. 4(a) reveals that ϕA and ϕB exchange

roles at α ∼ 1.5, around the point where the phase gets its

maximum value [see Fig. 3(d)].

IV. TOPOLOGICAL PHASE DIAGRAM

The topological state of a system is characterized by the

so-called Chern number or topological index [31]

C =
i

2π

∫

BZ

dk

occ
∑

ν

〈∂kuνk| × |∂kuνk〉 , (45)

with uνk(r) = e−ik·rψνk(r) being the periodic part of the Bloch

eigenfunctions. Since the band structure of the Haldane model

consists of a valence and a conduction band, only the lower

energy band enters the sum over occupied states in Eq. (45).

In order to efficiently calculate the Chern number, one can

rewrite the expression in (45) as

C =
1

2π

∫

BZ

dk �(k), (46)

where �(k) stands for the Berry curvature [32]. This quantity

can be accurately computed by means of the Wannier interpola-

tion technique, as discussed in [27,28,33]. In our calculations,

FIG. 5. (Color online) Topological phase diagram of the Haldane

model as a function of ϕ and ǫ/|t1|. The main figure is a zoom for

ϕ ∈ [−0.45,0.45], while the inset illustrates the full nominal diagram,

with ϕ ∈ [−π,π ]. Large (green), medium-size (red), and small (blue)

dots correspond to nonzero Chern numbers calculated ab initio for

s = 5, 7, and 9, respectively. The sign of the Chern number is equal

to the sign of the phase. The solid (black) line denotes the analytical

boundary ǫ/|t1| = 3
√

3 sin ϕ. The vertical dashed lines delimit the

physically accessible regions.

we find that a fine 5000 × 5000 k mesh is required in order to

converge the integral of Eq. (46).

The Chern number represents a topological property and

takes only integer numbers [31]. Its value is intimately

connected to the band structure and the gaps opened by

symmetry breaking at the Dirac points. If a gap is opened

solely by inversion symmetry breaking, the state of the system

is topologically trivial with C = 0. On the other hand, if the

gap is opened by time-reversal symmetry breaking, then the

system is found in a topologically nontrivial state with C �= 0.

When both symmetries are broken, the topological state of the

system depends on the relative strength of the inversion and

time-reversal symmetry breaking.

The topological phase diagram of the Haldane model has

been traditionally drawn as a function of ϕ and ǫ/|t1| [1,18]. In

order to facilitate the discussion, let us rewrite here the analytic

expression in Eq. (26) that defines the boundary between the

different insulating regions, namely,

ǫ

|t1|
= ±3

√
3 sin ϕ. (47)

In the original formulation, in which the dependence of ϕ

on α is derived by means of the Peierls substitution [1,18],

the whole phase diagram is accessible. However, since the

Peierls substitution is incorrect [20], the possible values of

ϕ are actually limited to a finite range that depends on s, as

discussed in Sec. III C [see, e.g., Fig. 3(d)]. This is shown

in Fig. 5, where the accessible region for each value of s is

represented by the vertical (dashed) lines. Actually, only a

small portion of the nominal phase diagram can be accessed

(see the inset), as the maximum allowed values of ϕ are much

smaller than π . In the figure, the dots represent a nontrivial

topological state with C = ±1. The fact that almost all these
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FIG. 6. (Color online) Topological phase diagram of the contin-

uous Hamiltonian in Eq. (1), as a function of α and χA, for three

different values of the scalar potential amplitude s. The nontrivial

topological state is indicated by big (green) dots for s = 5, medium

(red) dots for s = 7, and small (blue) dots for s = 9. The black dashed

lines represent a guide to the eye for the phase boundaries for each

value of s.

points lie in between the black solid lines [34] proves that—

in the allowed accessible region—the phase diagram of the

microscopic Hamiltonian is well described by the analytical

expression of Eq. (47) for the Haldane model.

Owing to the above analysis, we suggest that a more

appropriate way to draw the topological phase diagram is

in terms of the physical parameters that characterize the

underlying continuous Hamiltonian, namely, α, χA, and s.

This is shown in Fig. 6, where we plot the phase diagram

in the α-χA plane, for three different values of s. Importantly,

the figure evidences that the topological insulating phase with

C �= 0 shrinks dramatically as the system becomes more and

more tight binding (that is, by increasing s). Notice that the

sign of the Chern number in the topological insulator phase

(C = ±1) is consistent with the sign of α, and independent of

the sign of χA. Notice also that the probability of finding the

system in the topological insulator phase increases consistently

by decreasing the value of |χA|.
As previously anticipated, the structure of the phase

diagram is intimately connected to the behavior of the gaps

at the Dirac points. This is illustrated in Fig. 7, where we

plot the gaps δ+ and δ− as a function of α > 0 and three

different values of χA > 0 for fixed s = 5. Noteworthy, the

gap closing does not take place exactly at k−
D but in a

close-by non-high-symmetry point. The origin of this feature

has already been discussed in Sec. II C. For the specific value

s = 5 analyzed here, our calculations identify this point at

k̄− ≃ k−
D + 1.68 × 10−3(1/2,

√
3/2)kL, as shown in the inset

of Fig. 7(b) [35]. We find that the gap closing point is

slightly shifted for different values of s, but lies always very

close to k−
D . In all cases, the deviation from k−

D represents a

minor correction, and can be safely ignored in the following

discussion.

Notably, Fig. 7 reveals that the gap has a maximum at

α ≃ 1.0kL, implying that the effect of the vector potential in

opening the gap is limited, as expected from Eq. (26). It is also

noteworthy that when χA is relatively small, as in Figs. 7(a)

FIG. 7. (Color online) Behavior of the gaps δ+ (squares, solid

line) and δ− (triangles, dashed lines) as a function of α, for s = 5.

The three panels correspond to χA = 2 × 10−4 (a), 10−3 (b), and

1.9 × 10−3 (c). The latter corresponds to the maximal value of |χA|
for which the system can be in the topological insulating phase.

The gray shaded area corresponds to the region where the system

is a topological insulator (C = 1), whereas the white background

identifies a normal insulating state (C = 0). The inset in panel (b)

shows the behavior of the gap δ− at k−
D (dashed blue line) and at

k̄− ≃ k−
D + 1.68 × 10−3(1/2,

√
3/2)kL (red continuous line), around

the point α ≈ 1.8.

and 7(b), the gap δ− vanishes for two different values of α (the

role of δ+ and δ− is exchanged for α < 0). In fact, owing to the

nonmonotonic behavior of ϕ as a function of α [see Fig. 3(d)

and Ref. [20]], there are two different values of α for which

Eq. (47) can be satisfied (notice that the two values of ϕ at

the phase boundaries may be slightly different due to the fact

that |t1| also depends on α). The intermediate region between

these two values, which is represented by a gray shaded area

in the figures, corresponds to a topological nontrivial state

(C = 1) where the effect of time-reversal symmetry breaking

is stronger than inversion symmetry breaking. As mentioned

above, the smaller the value of χA, the larger the region with

C �= 0 as a function of α. By increasing χA, the topological

insulating phase shrinks and eventually disappears, as shown

in Fig. 7(c).

To conclude our analysis, let us discuss why the phase

diagram of Fig. 6 shrinks as s is increased. For such purpose,

in Fig. 8 we illustrate the evolution of the gap as a function of

α and s for fixed χA. This figure evidences that the maximum

of the gap decreases as s is increased; in other words, the

relative effect of time-reversal symmetry breaking decreases

with increasing s. As a consequence, even relatively low values

of χA can avoid gap closing provided s is large enough, as in

the case of s = 9 in Fig. 8. This, in turn, implies that the phase

transition to the topological insulator phase is restricted to

smaller values of χA as s is increased, in agreement with the

phase diagram of Fig. 6.
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FIG. 8. (Color online) Gap created at the Dirac points by time-

reversal symmetry breaking, for three different values of the scalar

potential amplitude s, fixed value χA = 2 × 10−4. Solid (squares) and

dashed lines (triangles) denote δ+ and δ−, respectively. The vertical

dashed-dot-dot lines denote the gap closing points for the two lowest

values of s.

V. CONCLUSIONS

In summary, we have presented an ab initio analysis

of a continuous Hamiltonian [18] that maps into the cele-

brated Haldane model [1]. The tunneling coefficients of the

tight-binding model have been computed by means of two

independent methods, one based on the maximally localized

Wannier functions and the other on a closed set of analytical

expressions in terms of the energy spectrum at selected high

symmetry points in the BZ. The two approaches present

remarkable agreement. In particular, we have shown that the

gaps created either by inversion or time-reversal symmetry

breaking are very well described by the tight-binding model,

which accurately reproduces the exact behavior. In addition,

we have calculated the topological phase diagram in terms of

the physical parameters entering the microscopic Hamiltonian,

finding that only a small portion of the original phase

diagram discussed by Haldane can actually be accessed within

this model. Moreover, we have shown that the nontrivial

topological phase with nonzero Chern number is suppressed

as the system enters the deep tight-binding regime. We believe

that, besides its conceptual implications, this work is relevant

for a possible experimental implementation of the Haldane

model following the proposal in Ref. [18].
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APPENDIX A: SPREAD OF THE MLWFs

Here we analyze the properties of the spread functional of

the MLWFs, � =
∑

ν [〈r2〉ν − 〈r〉2
ν] [23], as the amplitude

α of the vector potential is varied and the system crosses

the topological phase boundary. Marzari and Vanderbilt

showed that this functional can be divided into three parts,

namely, � = �I + �D + �OD [23]. The term �I is gauge

invariant [namely, independent of the choice of the unitary

transformations Uνν ′ (k) in Eq. (6)], whereas the diagonal term

�D and the off-diagonal term �OD do depend on the gauge

choice. In Fig. 9 we show the behavior of the three terms of the

spread as a function of α, for fixed values of s and χA. Here,

the nontrivial topological phase is indicated by the gray shaded

area. All the components of the spread show a continuous

behavior, even across the boundary between the trivial and

nontrivial topological states. Then, it is interesting to note that,

while the gauge-invariant term �I shows a monotonic decrease

as a function of α, the gauge-dependent terms �D and �OD

show a nonmonotonic behavior that is reminiscent of what we

observed for the gap (see Fig. 7) and for the complex phase of

the next-to-nearest tunneling coefficient in Fig. 3(d).

We notice that the smooth behavior of the spread shown by

our calculations differs from an earlier analysis of MLWFs in

the context of the Haldane model performed by Thonhauser

and Vanderbilt [36]. There the authors found a breakdown of

the usual procedures to build MLWFs as the system approaches

the topological phase boundary, resulting in a divergence of

the spread functional. The fundamental difference between our

approach and the one followed in Ref. [36] resides in the set

of bands considered for the construction of the MLWFs. In

fact, whereas our set includes both the valence and conduction

bands, their approach included only the valence band. This is

a crucial difference, since the net Chern number of a single

band in the topological phase is finite, therefore it becomes

impossible to choose a smooth periodic k-space gauge of the

Bloch orbitals and the procedure for constructing the MLWFs

fails. In our case, in contrast, the net sum of the Chern numbers

FIG. 9. (Color online) Spread of the MLWFs as a function of α

for fixed values s = 5, χA = 1 × 10−3. The spread is decomposed into

its gauge-invariant (�I ), band diagonal (�D), and band off-diagonal

(�OD) terms. Note the 103 factor in the case of �D and �OD .
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of the valence and conduction bands remains null, hence there

is no formal impediment for the construction of the MLWFs.

APPENDIX B: NUMERICAL CALCULATION

OF THE SPECTRUM

Both the calculation of the exact Bloch spectrum of the

continuous Hamiltonian of Eq. (1) and the construction of the

MLWFs require a standard Fourier decomposition that here is

adapted to account for the presence of the vector potential. We

express the eigenstates ψnk(r) of the Hamiltonian as

ψnk(r) =
∑

G

cnk+GeiG·r , (B1)

with G the reciprocal vectors and cnk+G the expansion co-

efficients. The vector potential acts as A(r) · p + p · A(r) =

−2i�A(r) · ∇r , introducing a nonlocal term when acting upon

an eigenstate ψnk(r):

i A(r) · ∇rψnk(r) = −A(r) ·
∑

G

Gcnk+GeiG·r . (B2)

Numerically, we found that a large number of G vectors

are needed in order to converge the above term due to the

presence of the gradient. In particular, the above term requires

an energy cutoff of 50ER , whereas the rest of the terms in the

Hamiltonian are converged with 10ER .

Finally, for extracting the tight-binding parameters using

the formulas discussed in Sec. III B, we have used a direct

diagonalization of H0 in Eq. (1) by means of a standard

Fourier decomposition. In this case, the vector potential term

in Eq. (B2) is transformed into a nondiagonal matrix in

momentum space.
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[10] K. L. Lee, B. Grémaud, R. Han, B.-G. Englert, and C. Miniatura,

Ultracold fermions in a graphene-type optical lattice, Phys. Rev.

A 80, 043411 (2009).

[11] L.-K. Lim, J.-N. Fuchs, and G. Montambaux, Mass and Chirality

Inversion of a Dirac Cone Pair in Stückelberg Interferometry,

Phys. Rev. Lett. 112, 155302 (2014).

[12] P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G.

Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K.

Sengstock, Multi-component quantum gases in spin-dependent

hexagonal lattices, Nat. Phys. 7, 434 (2011).

[13] P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Windpassinger,

and K. Sengstock, Quantum phase transition to unconventional

multi-orbital superfluidity in optical lattices, Nat. Phys. 8, 71

(2011).

[14] R. de Gail, J.-N. Fuchs, M. O. Goerbig, F. Piéchon, and G.

Montambaux, Manipulation of Dirac points in graphene-like

crystals, Physica B: Condens. Matter 407, 1948 (2012).

[15] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,

Creating, moving and merging dirac points with a fermi gas

in a tunable honeycomb lattice, Nature (London) 483, 302

(2012).

[16] L.-K. Lim, J.-N. Fuchs, and G. Montambaux, Bloch-Zener

Oscillations Across a Merging Transition of Dirac Points,

Phys. Rev. Lett. 108, 175303 (2012).

[17] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,

D. Greif, and T. Esslinger, Experimental realization of

the topological Haldane model with ultracold fermions,

Nature (London) 515, 237 (2014).

[18] L. B. Shao, S.-L. Zhu, L. Sheng, D. Y. Xing, and Z. D.

Wang, Realizing and Detecting the Quantum Hall Effect without

Landau Levels by Using Ultracold Atoms, Phys. Rev. Lett. 101,

246810 (2008).

[19] B. A. Bernevig, Topological Insulators and Topological Super-

conductors (Princeton University Press, Princeton, NJ, 2013).
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