001     276222
005     20240708132823.0
024 7 _ |2 doi
|a 10.1002/adem.201500061
024 7 _ |2 ISSN
|a 1438-1656
024 7 _ |2 ISSN
|a 1527-2648
024 7 _ |2 WOS
|a WOS:000367538600009
037 _ _ |a FZJ-2015-06687
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)164315
|a Laptev, Alexander
|b 0
|e Corresponding author
245 _ _ |a Increased Shape Stability and Porosity of Highly Porous Injection-Molded Titanium Parts
260 _ _ |a Weinheim
|b Wiley-VCH Verl.
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1448528341_24261
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Highly porous titanium parts in three different shapes (conical, cylindrical, and semi-cylindrical) were produced using metal injection molding (MIM) and the space holder technique. Potassium chloride (KCl) powder was used as a temporary space holder material. The frequently used extraction of the KCl space holder by dissolution in warm water was replaced with sublimation from the solid state during vacuum sintering. This improvement enabled highly porous titanium parts to be manufactured by MIM without the frequently observed sample collapse or extensive shape distortion. Final porosities of 55–60% were achieved, which is close to the recommended value for porous spinal titanium implants, making improved method attractive for implant manufacturing applications. An additional advantage of removing the space holder by sublimation is that the time-consuming salt leaching step can be omitted. A systematic study of sample configuration, porosity change, microstructure, and impurity uptake was conducted and the sintering cycle was optimized.
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Daudt, Natália F.
|b 1
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129591
|a Bram, Martin
|b 3
|u fzj
773 _ _ |0 PERI:(DE-600)2016980-2
|a 10.1002/adem.201500061
|g p. n/a - n/a
|n 11
|p 1579 - 1587
|t Advanced engineering materials
|v 17
|x 1438-1656
|y 2015
909 C O |o oai:juser.fz-juelich.de:276222
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)164315
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129591
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ADV ENG MATER : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21