001     276256
005     20240625095035.0
024 7 _ |a 10.1109/JPROC.2015.2432125
|2 doi
024 7 _ |a WOS:000358243500012
|2 WOS
037 _ _ |a FZJ-2015-06719
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The Memory Problem of Quantum Information Processing
260 _ _ |a New York, N.Y.
|c 2015
|b Inst. of Electr. and Electronics Engineers
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1448364644_32102
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In quantum information processing, the fundamental rules of information representation are different than in the classical setting. The fundamental unretrievability of some forms of information from quantum memory enable unique capabilities that enhance privacy and security. Unique correlations between quantum bits, referred to as quantum entanglement, enable fundamentally faster algorithms for important computational problems. Quantum bits are very delicate, and require extraordinarily low noise levels in order that they can be stored successfully. However, the long-term storage of quantum information is not hopeless, with relatively new discoveries of unique features of quantum entanglement showing that effective use of redundancy should make possible the solution of the quantum memory problem. Laboratory capabilities are just starting to make it possible to test these ideas, and a clear concept of the architectural solutions to scalable quantum computing is emerging.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
773 _ _ |a 10.1109/JPROC.2015.2432125
|0 PERI:(DE-600)1298665-3
|n 8
|p 1417-1425
|t ... IEEE International Symposium on Circuits and Systems proceedings
|v 103
|y 2015
|x 0271-4302
856 4 _ |u https://juser.fz-juelich.de/record/276256/files/07137628.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276256/files/07137628.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276256/files/07137628.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276256/files/07137628.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276256/files/07137628.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/276256/files/07137628.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:276256
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21