000276257 001__ 276257
000276257 005__ 20240625095035.0
000276257 0247_ $$2arXiv$$aarXiv:1505.04116
000276257 0247_ $$2doi$$a10.1016/j.aop.2015.07.005
000276257 0247_ $$2Handle$$a2128/13249
000276257 0247_ $$2WOS$$aWOS:000360418800037
000276257 037__ $$aFZJ-2015-06720
000276257 041__ $$aEnglish
000276257 082__ $$a530
000276257 1001_ $$0P:(DE-HGF)0$$aSolgun, F.$$b0$$eCorresponding author
000276257 245__ $$aMultiport Impedance Quantization
000276257 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000276257 3367_ $$2DRIVER$$aarticle
000276257 3367_ $$2DataCite$$aOutput Types/Journal article
000276257 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481901032_19369
000276257 3367_ $$2BibTeX$$aARTICLE
000276257 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276257 3367_ $$00$$2EndNote$$aJournal Article
000276257 520__ $$aWith the increase of complexity and coherence of superconducting systems made using the principles of circuit quantum electrodynamics, more accurate methods are needed for the characterization, analysis and optimization of these quantum processors. Here we introduce a new method of modelling that can be applied to superconducting structures involving multiple Josephson junctions, high-Q superconducting cavities, external ports, and voltage sources. Our technique, an extension of our previous work on single-port structures [1], permits the derivation of system Hamiltonians that are capable of representing every feature of the physical system over a wide frequency band and the computation of T1 times for qubits. We begin with a black box model of the linear and passive part of the system. Its response is given by its multiport impedance function Zsim(w), which can be obtained using a finite-element electormagnetics simulator. The ports of this black box are defined by the terminal pairs of Josephson junctions, voltage sources, and 50 Ohm connectors to high-frequency lines. We fit Zsim(w) to a positive-real (PR) multiport impedance matrix Z(s), a function of the complex Laplace variable s. We then use state-space techniques to synthesize a finite electric circuit admitting exactly the same impedance Z(s) across its ports; the PR property ensures the existence of this finite physical circuit. We compare the performance of state-space algorithms to classical frequency domain methods, justifying their superiority in numerical stability. The Hamiltonian of the multiport model circuit is obtained by using existing lumped element circuit quantization formalisms [2, 3]. Due to the presence of ideal transformers in the model circuit, these quantization methods must be extended, requiring the introduction of an extension of the Kirchhoff voltage and current laws.
000276257 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000276257 588__ $$aDataset connected to arXivarXiv
000276257 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b1
000276257 773__ $$0PERI:(DE-600)1461336-0$$a10.1016/j.aop.2015.07.005$$p605-669$$tAnnals of physics$$v361$$x0003-4916$$y2015
000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.pdf$$yOpenAccess
000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.gif?subformat=icon$$xicon$$yOpenAccess
000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276257 909CO $$ooai:juser.fz-juelich.de:276257$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000276257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000276257 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000276257 9141_ $$y2015
000276257 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276257 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN PHYS-NEW YORK : 2014
000276257 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276257 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000276257 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276257 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000276257 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276257 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276257 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000276257 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000276257 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276257 920__ $$lyes
000276257 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000276257 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1
000276257 980__ $$ajournal
000276257 980__ $$aVDB
000276257 980__ $$aUNRESTRICTED
000276257 980__ $$aI:(DE-Juel1)PGI-2-20110106
000276257 980__ $$aI:(DE-Juel1)IAS-3-20090406
000276257 9801_ $$aFullTexts
000276257 981__ $$aI:(DE-Juel1)IAS-3-20090406