000276257 001__ 276257 000276257 005__ 20240625095035.0 000276257 0247_ $$2arXiv$$aarXiv:1505.04116 000276257 0247_ $$2doi$$a10.1016/j.aop.2015.07.005 000276257 0247_ $$2Handle$$a2128/13249 000276257 0247_ $$2WOS$$aWOS:000360418800037 000276257 037__ $$aFZJ-2015-06720 000276257 041__ $$aEnglish 000276257 082__ $$a530 000276257 1001_ $$0P:(DE-HGF)0$$aSolgun, F.$$b0$$eCorresponding author 000276257 245__ $$aMultiport Impedance Quantization 000276257 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015 000276257 3367_ $$2DRIVER$$aarticle 000276257 3367_ $$2DataCite$$aOutput Types/Journal article 000276257 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481901032_19369 000276257 3367_ $$2BibTeX$$aARTICLE 000276257 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000276257 3367_ $$00$$2EndNote$$aJournal Article 000276257 520__ $$aWith the increase of complexity and coherence of superconducting systems made using the principles of circuit quantum electrodynamics, more accurate methods are needed for the characterization, analysis and optimization of these quantum processors. Here we introduce a new method of modelling that can be applied to superconducting structures involving multiple Josephson junctions, high-Q superconducting cavities, external ports, and voltage sources. Our technique, an extension of our previous work on single-port structures [1], permits the derivation of system Hamiltonians that are capable of representing every feature of the physical system over a wide frequency band and the computation of T1 times for qubits. We begin with a black box model of the linear and passive part of the system. Its response is given by its multiport impedance function Zsim(w), which can be obtained using a finite-element electormagnetics simulator. The ports of this black box are defined by the terminal pairs of Josephson junctions, voltage sources, and 50 Ohm connectors to high-frequency lines. We fit Zsim(w) to a positive-real (PR) multiport impedance matrix Z(s), a function of the complex Laplace variable s. We then use state-space techniques to synthesize a finite electric circuit admitting exactly the same impedance Z(s) across its ports; the PR property ensures the existence of this finite physical circuit. We compare the performance of state-space algorithms to classical frequency domain methods, justifying their superiority in numerical stability. The Hamiltonian of the multiport model circuit is obtained by using existing lumped element circuit quantization formalisms [2, 3]. Due to the presence of ideal transformers in the model circuit, these quantization methods must be extended, requiring the introduction of an extension of the Kirchhoff voltage and current laws. 000276257 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000276257 588__ $$aDataset connected to arXivarXiv 000276257 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b1 000276257 773__ $$0PERI:(DE-600)1461336-0$$a10.1016/j.aop.2015.07.005$$p605-669$$tAnnals of physics$$v361$$x0003-4916$$y2015 000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.pdf$$yOpenAccess 000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.gif?subformat=icon$$xicon$$yOpenAccess 000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000276257 8564_ $$uhttps://juser.fz-juelich.de/record/276257/files/1505.04116v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000276257 909CO $$ooai:juser.fz-juelich.de:276257$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000276257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000276257 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000276257 9141_ $$y2015 000276257 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000276257 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN PHYS-NEW YORK : 2014 000276257 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000276257 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000276257 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000276257 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000276257 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000276257 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000276257 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000276257 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000276257 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000276257 920__ $$lyes 000276257 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000276257 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1 000276257 980__ $$ajournal 000276257 980__ $$aVDB 000276257 980__ $$aUNRESTRICTED 000276257 980__ $$aI:(DE-Juel1)PGI-2-20110106 000276257 980__ $$aI:(DE-Juel1)IAS-3-20090406 000276257 9801_ $$aFullTexts 000276257 981__ $$aI:(DE-Juel1)IAS-3-20090406