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We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction,
in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound
states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error
processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of
the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the
degree of self-correction of this specific quantum computing architecture.

DOI: 10.1103/PhysRevLett.115.120402 PACS numbers: 05.30.Pr, 03.65.Yz, 03.67.Lx, 03.67.Pp

Introduction.—Taking advantage of topological states of
matter to encode and process quantum information is
viewed as a promising route towards quantum computation.
The idea is that the quantum information is naturally
protected from decoherence so that quantum gates can
be performed reliably by braiding anyonic excitations.
Recent work has focused on the realization of the topo-
logical phase as described by the Kitaev wire model [1,2].
Unpaired Majorana modes are predicted in this model, and,
under braiding in a network of 1D wires, these modes will
behave as Ising anyons, enabling a form of topological
quantum computation. Intensive theoretical [3–6] and
experimental [7–12] investigations of nanowire hybrid
systems have been undertaken to establish the existence
of these “Majorana particles,” with the hope that a network
of branched nanowires provides a suitable geometry for the
moving of these particles [13,14].
While topology does give some measure of robustness,

especially in the face of static disorder [15,16], it has been
noted that Majorana qubits are not entirely immune to
decoherence. For example, these qubits are dephased by the
induced splitting of nearby Majorana states due to tunnel-
ing [17]. It is also clear that it is essential to avoid
parity-changing excitations, that is, injection of individual
quasiparticles from the environment, which are immedi-
ately destructive of Majorana-qubit coherence [18–20]. The
decoherence of Majorana qubits induced by thermal
excitations above the superconducting gap has been inves-
tigated in Refs. [21,22]. Additional sources of noise in a
trijunction setup [23] and when Majorana bound states
(MBSs) are physically moved [24–28] have also been
recently studied.
Starting from a microscopic model, here we perform a

detailed analysis of the effect of a parity-preserving
environment on the fidelity of the topological qubit. Our
main focus is the interplay between thermal errors and the
adiabatic motion of MBSs, within the trijunction scheme of
[14]. Our calculations here, using a standard treatment of a
generic local bosonic environment at low temperature,

show that the parity-preserving environment produces
unavoidable dangerous errors arising from the motion of
MBSs. These errors put an upper limit on the lifetime of the
qubits, which cannot be improved by keeping the MBSs
further apart. The motion of MBSs causes a spatial
separation of thermally produced quasiparticle pairs, such
that they act to effectively change the parity, just as parity-
breaking environments do.
Kitaev model.—The Kitaev wire [2], an archetypical

example of a system supporting Ising anyons, consists of a
1D chain of hopping fermions coupled by a superconduct-
ing pairing term,

HSðτÞ¼−
XL
j¼1

μjðτÞa†jaj−
XL−1
j¼1

ðta†jajþ1−Δajajþ1þH:c:Þ:

ð1Þ
The first term describes a site- and time-dependent chemi-
cal potential μjðτÞ ≤ 0. The second and third terms
describe, respectively, nearest-neighbor hopping with
t > 0 and superconducting pairing with Δ ¼ jΔjeiθ.
We first analyze on the case μj ¼ 0∀j and expressHS in

terms of Majorana-mode operators aj ¼ ðγ2j−1 þ iγ2jÞ=2
which satisfy fγj; γkg ¼ 2δjk. For the parameters we study
in this Letter, t ¼ jΔj and θ ¼ 0, HS reduces to

HS ¼ −Δ
XL−1
j¼1

iγ2jþ1γ2j: ð2Þ

Note that the end Majorana modes, γ1 and γ2L, are
decoupled from the rest of the chain; thus, a zero-energy
delocalized fermionic mode exists with creation operator
d0 ¼ ðγ1 þ iγ2LÞ=2.HS can be fully diagonalized using the
eigenoperators dj ¼ ðγ2j þ iγ2jþ1Þ=2 and written as

HS ¼ Δ
P

L−1
j¼1 ð2d†jdj − 1Þ.

For μj ≠ 0, MBSs localized near the end of the wire
persist as long as jμjj ≤ 2t; this is called the topological
phase. For jμjj ≥ 2t the localized modes disappear and we
enter the nontopological phase. Deep in the nontopological
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phase, with jμjj ≫ t;Δ, the Majorana Hamiltonian ap-
proaches Hnontop

S ¼ −iμ=2
P

L
j¼1 γ2j−1γ2j and the Majorana

modes are paired in a shifted way as compared to Eq. (2),
see Fig. 1(a).
More generally, MBSs occur at the junction between

topological and nontopological segments of the wire. By
varying the chemical potential, one can increase or decrease
the size of the nontopological segments and thus move the
position of the MBSs. As proposed in Ref. [14], this
technique can be used to braid MBSs in a nanowire
trijunction setup (Fig. 2) and perform gates in a topologi-
cally protected fashion. In order to stay within the ground-
state subspace, the motion of the MBSs must be adiabatic.
This means that the chemical potentials μjðτÞ must be
varied on a time scale slow compared to 1=Δ. Specifically,
here we vary the chemical potentials linearly with time.
Encoding and error correction.—For the sake of clarity,

we first focus on the encoding of a logical qubit in a single
Kitaev wire with μj ¼ 0 and then we generalize the
discussion to the branched wire forming a trijunction.
The ground-state subspace of HS in Eq. (2) forms a
stabilizer code with stabilizer operators Sj ¼ iγ2jþ1γ2j
[16,29]; that is, the logical qubit states j0̄i and j1̄i are
invariant under the action of the Sj operators with
j ¼ 1;…; L − 1. Furthermore, they are defined by the
phase they acquire under the action of the parity operator
S0 ¼ iγ1γ2L, namely S0j0̄i ¼ j0̄i and S0j1̄i ¼ −j1̄i.

In this context, excitations above the ground states are
interpreted as particles; whenever a stabilizer is violated,
then we say that the wire supports a ψ particle at the
position of the violated stabilizer, see Fig. 1(a). Also here
we represent a parity flip S0 → −S0 by drawing a ψ particle
inside one of the MBSs. In the ground-state subspace,
drawing the ψ inside the MBS γ1 is interpreted as a logical
X flip of the qubit state, drawing it inside the MBS γ2L
corresponds to a logical Y flip, while drawing it inside both
of them corresponds to a logical phase flip XY ∝ Z ¼ S0.
Note that here we consider solely parity-conserving per-
turbations and ψ particles are thus created in pairs. A string
operator creating pairs of ψ ’s corresponding to, say,
Sj ¼ −1 and Sk ¼ −1, is Sjk ¼ γ2jþ1γ2jþ2 � � � γ2k. String
operators give us a rigorous way to define fusion of the
different excitations, and thus perform error correction; two
ψ excitations Sa ¼ −1 and Sb ¼ −1 are fused and

(a)

(b)

(c)

FIG. 1 (color online). (a) Representation of the Kitaev wire
supporting a nontopological (gray) and a topological (black)
segment. The large black dots represent the fermionic sites of
Eq. (1). The smaller dots below represent the Majorana modes of
Eq. (2). The lines between the small dots represent the coupling
between Majorana modes in the limit jμjj ≫ t;Δ (for the non-
topological segment) and for the values μj ¼ 0 and t ¼ Δ (for the
topological segment). The excitations above the ground states are
local and can be understood as ψ particles as depicted. (b) Space
profile of the chemical potential μj corresponding to the situation
in (a). The chemical potential in the nontopological segment is
made nonuniform in order to localize the ψ 0 particles. (c) Con-
figuration of ψ particles corresponding to logical X, Y, and Z
Pauli errors in the trijunction.
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(d)

FIG. 2 (color online). (a) Trijunction of size L ¼ 7, composed
of horizontal and vertical wires coupled by hopping and super-
conducting pairing. The zero-energy MBSs γ1;2;3;4 are shown.
(b) Braiding sequence considered in this work; MBSs 1 and 3 are
exchanged, while MBSs 2 and 4 remain immobile. (c),(d)
Sequence of two equiprobable error processes. The two sequen-
ces lead to the exact same error syndrome. After application of
our error-correcting algorithm to the evolution at (v), the outcome
in (c) is faulty while the one in (d) is successful.

PRL 115, 120402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

18 SEPTEMBER 2015

120402-2



annihilated by applying Sab. If one wants to fuse a ψ
excitation Sa ¼ −1with the MBS γ1, one should apply S0a;
this moves the ψ from the bulk to inside the MBS, thereby
flipping the parity S0 → −S0. This phenomenology corre-
sponds to the standard fusion rules for Ising anyons [30]
with topological charges σ, ψ , and 1: σ × σ ¼ 1þ ψ ,
ψ × ψ ¼ 1, and σ × ψ ¼ σ. MBSs are identified with the
Ising anyons σ, because they follow the prescribed fusion
rules (as just shown) as well as braiding rules [14].
We now discuss the trijunction setup. We consider a

scenario with four MBSs γ1 - 4, using a scheme in which γ1
and γ3 are braided while γ2 and γ4 remain immobile, see
Fig. 2(b). In such a case, the ground-state subspace is
fourfold degenerate and we follow the procedure presented
in Ref. [31] to encode the logical qubit in a fixed-parity
sector, say iγ1γ2iγ3γ4 ¼ þ1. Similar to above, we have
iγ1γ2j0̄i ¼ iγ3γ4j0̄i ¼ j0̄i and iγ1γ2j1̄i ¼ iγ3γ4j1̄i ¼ −j1̄i.
Again, excitations are localized and can be understood in
terms of ψ particles. Logical X, Y, and Z errors are present
when ψ particles reside inside MBSs, see Fig. 1(c).
Pairs of ψ particles can be created, annihilated, or can

hop due to interaction with a bath. But we presume the
possibility of final error correction that undoes the effect of
the thermal environment and protects the stored quantum
information. We thus assume that it is possible to identify
the position of the ψ particles in the bulk of the trijunction
setup and thus identify the error syndrome. Note that the
fusion rule σ × ψ ¼ σ indicates that a ψ inside the MBS is
invisible to error correction. Having the syndrome infor-
mation in hand, one performs a set of unitary operations
having the effect of annihilating ψ particles in order to map
back into the ground-state subspace and hopefully recover
the stored qubit. The simple algorithm we use is an
adaptation of the algorithm presented in Ref. [32], see
also Ref. [33]. The main idea is to fuse pairs of nearby
particles (MBS or ψ).
Coupling to a thermal bath.—We see that, over time, the

fundamental ψ excitations cause the destruction of the
encoded information. Here we derive a master equation for
the trijunction when such excitations result from coupling
to a thermal bath. We start with the following microscopic
model:

HðτÞ ¼ Htrij
S ðτÞ þHB þHSB: ð3Þ

Here Htrij
S ðτÞ is the adiabatically varied trijunction

Hamiltonian, consisting of hopping and pairing terms as
in Eq. (1) for each segment of the trijunction,HB is a bosonic
bath Hamiltonian and HSB¼−

P
jBj⊗ð2a†jaj−1Þ¼

−i
P

jBj⊗γ2j−1γ2j is a conventional system-bath coupling.
Importantly, HSB conserves the overall parity of the system;
system operators γ2j−1γ2j anticommute with two stabilizers
Sj−1 and Sj; thus, ψ excitations are created in pairs.

Following the Davies prescription [33], we obtain the
master equation, in Lindblad form, for the system density
matrix in the adiabatic limit,

_ρSðτÞ ¼ −i½Htrij
S ðτÞ; ρSðτÞ� þD½ρSðτÞ�; ð4Þ

with

D½ρSðτÞ� ¼
X
i;j

X
ωðτÞ

γij½ωðτÞ�
�
Ai½ωðτÞ�ρSðτÞAj½ωðτÞ�†

−
1

2
fAj½ωðτÞ�†Ai½ωðτÞ�; ρSðτÞg

�
; ð5Þ

where ωðτÞ describes the different energy gaps at time τ

between the different eigenbranches of Htrij
S ðτÞ. The Davies

approach gives jump operators Ai½ωðτÞ� satisfying detailed
balance, that cause transitions between different system
eigenbranches separated by energy ωðτÞ at time τ. A crucial
property of our system Hamiltonian is that the jump
operators remain strictly local [33].
The diagonal matrix elements of ρSðτÞ decouple from the

off-diagonal elements [33] so that one obtains a Pauli
master equation for the population in an instantaneous
eigenstate jnðτÞi of Htrij

S ðτÞ,

dP½nðτÞ;τ�
dτ

¼
X
mðτÞ

W½nðτÞjmðτÞ�P(mðτÞ;τ)−m↔n;

W½nðτÞjmðτÞ�¼ γ½ωmnðτÞ�jhmðτÞjAimn ½ωmnðτÞ�jnðτÞij2; ð6Þ

and γðωÞ ¼ κjω=½1 − expð−βωÞ�j is the bath spectral func-
tion with inverse temperature β and with coupling constant
κ. Note that γðωÞ does not depend on position since we
assume the baths coupled to each site to have identical form
and thus to have the same spectral function.
For the sake of illustration, we first consider here the

time-independent case, i.e., when the MBSs are immobile,
and identify which transitions are caused by the jump
operators. In the case of moving MBSs many more
fundamental processes are allowed, but we believe that
the following list gives some intuition for the error
processes that also occur in the more general case.
(i) Creation or annihilation of a ψ pair in the bulk, with
energy cost �4Δ. (ii) Hopping of a ψ to a nearest-neighbor
site in the bulk, with energy cost 0. (iii) ψ-pair creation
(annihilation) at a boundary supporting a MBS, with energy
cost �2Δ. (iv) Hopping of a ψ into or out of a neighboring
MBS, with energy cost �2Δ. In Ref. [33], we present an
exhaustive list of the hundreds of allowed error processes
that occur in the trijunction during adiabatic braiding.
It is worth pointing out that the system-bath interaction

in Eq. (3) does not support the creation of ψ particles
in the nontopological segments of the trijunction. Indeed,
as the chemical potential becomes very negative, the
eigenstates become very close to those of Hnontop

S and
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½Hnontop
S ; HSB� ¼ 0. However, this does not mean that no ψ

particles will ever be present in the nontopological seg-
ments. To understand that, one needs to investigate the
interaction between moving MBSs and ψ particles. We note
the following: (i) When a MBS moves over an existing ψ
particle, the ψ particle is transferred from the topological
segment into the nontopological one. For clarity we use the
notation ψ 0 for an excitation in the nontopological segments.
In the reverse scenario, when a MBS moves over a ψ 0, then
the excitation transfers back to the topological segment,
becoming a ψ . (ii) A ψ particle inside a MBS remains inside
the MBS during the motion. These two properties can be
proved straightforwardly by diagonalization of a four-site
model [33]. In our error-correcting algorithm presented
above, ψ and ψ 0 particles are treated exactly in the same
way. In particular, during error correction it is assumed that
the position of excitations can be measured everywhere, not
only in the topological segments.
Dangerous error processes.—We show that some

elementary error processes lead to a lifetime of the stored
logical qubit that cannot be improved by increasing the size
of the trijunction setup. This is in contrast with the case of
immobile MBSs, where the lifetime grows with the system
size [16,33]. In Ref. [33] we show that the lifetime grows
logarithmically with L in the high-temperature limit.
Immobile MBSs thus represent a good quantum memory.
However, a logarithmic scaling of the lifetime is generally
too weak if braiding is performed since the time to
adiabatically braid the MBSs scales linearly with L [34].
Here we show that the lifetime does not actually scale at all
with L when MBSs are moved because of dangerous error
processes. These error processes thus put a restriction on
the degree of self-correction of this specific quantum
computing architecture when braiding is executed.
Consider the creation of a ψ pair, one inside a MBS and

one in the bulk of the trijunction. Since a ψ inside a MBS
cannot escape when the MBS is moved, this ψ particle will
be dragged along during the braiding motion. In other words,
an originally local error process becomes highly nonlocal
due to the braiding motion. For example, the error sequence
depicted in Fig. 2(c) leads to a logical X error after our error-
correcting algorithm has been applied, although only two
fundamental error processes occurred. Dangerous error
processes will generally lead to X and Y logical errors
and our error-correcting algorithm will fail independent of
the system size. It may appear surprising that X and Y errors
are at all possible since the total parity of the system is
conserved. However, this can happen because the parity of
individual topological segments is not conserved since
MBSs are moved and ψ particles can be transferred to
nontopological segments as mentioned above.
One natural question is whether a better algorithm would

be able to take into account the nonlocality introduced by
braiding. Unfortunately, this is impossible, as shown by
Figs. 2(c) and 2(d). Here we see two distinct sequences of
two fundamental error processes leading to exactly the
same error syndrome. The difference between the two final

states is the occurrence of the ψ particles inside MBSs. But
these ψ’s are invisible to error correction, so these two
situations produce the same error syndrome and are not
distinguishable by any error-correcting algorithm. If one of
these cases is successfully recovered by error correction,
the other will lead to failure. Our discussion is independent
of the size of the trijunction; this implies that the lifetime of
the stored information will not grow with system size. Our
study thus provides evidence that active error correction
during braiding would be necessary in topological quan-
tum computation [35–38].
Monte Carlo methods.—We confirm our predictions by

simulating the Pauli master equation (6) with standard
Monte Carlo methods. We have calculated the rates of all
the allowed error processes by numerically diagonalizing
six-site trijunctions, see Ref. [33] for more details. We
focus on the low-temperature regime β ¼ 4=Δ. A discus-
sion of the high-temperature case can be found in Ref. [33].
Figure 3(a) shows the probabilities pXþY , and pZ of X

and Y, as well as Z logical errors as a function of time for
trijunctions with different L [39]. A single braid [Fig. 2(b)]
is executed at the beginning and the MBSs are then left

(a)

(b)

FIG. 3 (color online). (a) Probabilities pXþY (solid) and pZ
(dashed) as a function of time for trijunctions with
L ¼ 19; 29; 49. The elementary time step to move a MBS to a
nearest-neighbor site is 104=Δ. The braiding time is
τbraid ¼ ð2Lþ 2Þ104=Δ; a dashed vertical line specifies when
τbraid is achieved. For times τ < τbraid, we execute the braiding
motion incompletely while the coupling to the external bath is on.
We then finish the braiding motion unitarily without any coupling
to the thermal bath. (b) Artistic representation of the total
probability of failure as a function of time for a trijunction setup
of a given length where three braiding motions, separated by a
time interval δτ, are executed. If the coupling to the external bath
is small, the only contribution to pfailure is due to dangerous errors
during braiding.
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immobile for the remaining time. pXþY increases signifi-
cantly during the braiding period. This is in agreement with
the above discussion of dangerous processes that occur
solely during the motion of MBSs. Also, the growth of
pXþY at small times is found to be independent of L,
confirming that dangerous processes lead to a lifetime
independent of the system size. On the other hand, Z
logical errors are due either to a high density of ψ particles
or to diffusion of a ψ particle over a distance greater than
L=2. In both cases error correction will eventually fail due
to an accumulation of error processes. Therefore, pZ stays
small during the (short) braiding period and increases at
larger times.
Conclusion.—While our results put restrictions on the

quantum coherence that may be expected in one particular
braiding scheme, there are many other scenarios in which
MBSs could have unique strengths in the processing of
quantum information. For example, the present analysis
does not restrict the feasibility of the interaction-induced
braiding concept of Refs. [40,41]; we hope to pursue an
extension of our system-environment treatment to this case.
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