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The mechanism of flow in glassy materials is interrogated using mechanical spectroscopy applied to
model nearly hard sphere colloidal glasses during flow. Superimposing a small amplitude oscillatory
motion orthogonal onto steady shear flow makes it possible to directly evaluate the effect of a steady state
flow on the out-of-cage (α) relaxation as well as the in-cage motions. To this end, the crossover frequency
deduced from the viscoelastic spectra is used as a direct measure of the inverse microstructural relaxation
time, during flow. The latter is found to scale linearly with the rate of deformation. The microscopic
mechanism of flow can then be identified as a convective cage release. Further insights are provided when
the viscoelastic spectra at different shear rates are shifted to scale the alpha relaxation and produce a strain
rate-orthogonal frequency superposition, the colloidal analogue of time temperature superposition in
polymers with the flow strength playing the role of temperature. Whereas the scaling works well for the α
relaxation, deviations are observed both at low and high frequencies. Brownian dynamics simulations point
to the origins of these deviations; at high frequencies these are due to the deformation of the cages which
slows down the short-time diffusion, while at low frequency, deviations are most probably caused by some
mild hydroclustering.
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The flow of glasses is an intriguing subject in condensed
matter physics, both of fundamental interest [1,2] and
technological importance, in a variety of systems from
polymers and colloids [3] to spin and metallic glasses [4,5].
Colloidal hard spheres (HS) have been used as relevant
model systems to investigate both ordered and glassy states
[6,7]. The glass transition occurs due to a long-lived
entropic caging of a particle when the volume fraction
exceeds a critical value of about ϕ ¼ 0.59 [8–10]. As the
long-time, out-of-cage motion (α relaxation) is suppressed,
diffusive motion is the only relaxation mode detected at
short length and time scales corresponding to in-cage
Brownian motion (β relaxation) [3,11]. Such colloidal
glasses provide a rigorous testing ground for fundamental
problems of flowing nonergodic systems where internal
dynamics, nonequilibrium microstructure, and mechanical
properties are accessible for direct comparison with com-
puter simulations. Different theoretical approaches based,
for example, on mode coupling theory adapted to flowing
systems [12] and activated hopping approaches [13],
provide insights and challenging predictions.
While themechanisms of yielding and flow ofmodel hard

sphere glasses have been extensively investigated, both for
steady [7,14–18] and oscillatory shear flow [19–22] several
aspects are still unresolved. Not unimportantly, the mecha-
nism of flow is ill understood. Experiments that aim to
investigate this by studying the scaling of shear induced

diffusivity with the applied macroscopic shear rate do not
reveal a simple flowmechanism and have been the subject of
controversy [23,24]. Measurements, where the scaling of
nonlinear oscillatory frequency sweepswere used to obtain a
strain rate-frequency superposition (SRFS), have been
proposed as to elucidate the flow mechanism [25], but so
far they have been proven problematic [26], in part due to a
complex kinematic history which mixes in with the non-
linear response of the system. In the present work, we use a
strategy to explore a wide range of time scales that bears
similarities to time temperature superposition (TTS) used in
polymeric systems, but with shear used to control the
effective temperature in the glass.
Orthogonal superposition rheometry (OSR) combines

two deformation modes, steady shear and small amplitude
oscillatory shear applied simultaneously and orthogonally
to each other. In this way, small amplitude orthogonal
frequency sweeps orthogonally interrogate the sample and
retrieve its viscoelastic spectra under steady shear [27–33].
Our approach is fundamentally different from SRFS [25] as
superposition rheometry is based on the linear measure-
ments of a perturbation spectrum characterizing a strongly
nonlinear state; hence, the kinematics of the flow field that
create the nonlinear response are simple, and the spectrum
can be directly and gently probed. This technique, that now
has been made sensitive enough, enables us to probe model
colloidal glasses under steady shear without resorting to
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nonlinear oscillatory measurements with complicated
intracycle kinematics.
In the present work, we directly measure how the flow in

glasses proceeds, by measuring how it affects the α and β
relaxations in colloidal suspensions of model hard spheres.
To this end, we measure the full viscoelastic spectrum of
sheared HS glasses through OSR and first determine the
characteristic crossover frequency ωc, which provides a
direct measure of the shear induced structural relaxation.
Second we use the shear rate evolution of this crossover
frequency to investigate if a scaling of the perturbation
spectra can be achieved.
We used sterically stabilized poly(methyl methacrylate)

(PMMA) nearly hard-sphere particles of 196 nm radius
with polydispersity σ ≃ 20%, dispersed in an octadecene-
bromonaphthalene solvent (refractive index 1.485) to min-
imize residual van der Waals attractions and evaporation.
Volume fractions, initially estimated from random closed
packing (ϕrcp ¼ 0.67), were precisely determined by match-
ing the magnitudes of the moduli to the master curve pro-
vided by Koumakis et al. [34]. Superposition rheometry was
performed using an ARES-G2 (TA) rheometer with a home
modified normal force control loop, equipped with a custom
built open bottom double wall Couette geometry [31,33,35].
Steady shear flow was imposed in the tangential direction
and the small strain amplitude oscillatory motion was
imposed vertically. We investigated steady state shear rates
_γ from 10−4 to 1 s−1 (≈10−5 to 10−1 Pe), represented below
by the dimensionless Peclet number, Pe ¼ _γtB, where tB ¼
R2=D0 (¼ 0.158 s) is the time scale of Brownian motion and
D0 the bare diffusion coefficient. Orthogonal frequency
sweeps at a low strain amplitude (∼0.7%) in the linear
regime (see Supplemental Material [35]) were performed
once steady state shear with _γ was reached. To prevent slip,
at low Pe < 1 tools were roughened by coating of similar
PMMA particles [36]. Moreover, we largely avoided mea-
surements in the shear banding regime (at very low Pe) [23]
except for the highest ϕ ¼ 0.64 and for Pe < 10−4.
Complementarily, we conducted Brownian dynamics (BD)
simulations [37] using 50 000 particles with 10% polydis-
persity and periodic boundary conditions for ϕ ¼ 0.62 at
rest, Pe ¼ 0.01 and 0.1 (see Supplemental Material [35]).
Orthogonal superposition experiments were performed

at various Pe and three volume fractions, 0.60, 0.61, and
0.64. Figure 1(a) shows frequency sweeps at ϕ ¼ 0.61,
performed at different Pe. At low Pe the data of Fig. 1(a)
reveals a response similar to that of a quiescent glass (see
Supplemental Material [35]) with G0 > G00 for all ω ’s
measured. As Pe is increased flow induces microstructural
changes and speeds-up internal dynamics as manifested by
the crossover frequency ωc (at G0 ¼ G00), entering the
experimental window. A scaling of the moduli as a function
of frequency for the different steady state shear rates was
produced through shift of the data in the x and y axes by
factors a and b, respectively, in a way that the crossover

frequencies ωc for all Pe coincide. In the regime where ωc
is not measurable, the shift is performed somewhat ad hoc
to match the full viscoelastic spectra. Figures 1(b), 1(c),
and 1(d) show the scaling results for HS glasses at
ϕ ¼ 0.60, 0.61, and 0.64. A strain rate-orthogonal fre-
quency superposition (SROFS) is observed. In all mea-
surements two distinct frequency regimes are separated by
ωc. For ω > ωc (short time scales) the elastic moduli G0
superimpose for all Pe, whereas G00 data exhibit an increase
with Pe (see arrow in Fig. 1). For ω < ωc (long time scales)
the trend varies with volume fraction. In Fig. 1(b), for
ϕ ¼ 0.60, G0 and G00 superimpose well with slopes of 1.1
and 0.8, respectively. At ϕ ¼ 0.61, G0 and G00 are closer to
each other and exhibit slopes of 0.9 and 0.7, respectively
[Fig. 1(c)], while at ϕ ¼ 0.64 [Fig. 1(d)] G0 and G00 are
almost identical with a slope of about 0.6.
In addition, for high Pe of the main flow and low values

of ω of the orthogonal motion, the response shows some
clear deviations. This is better seen in conjunction with
Figs. 2(a) and 2(b), where we show for ϕ ¼ 0.61 the
orthogonal stress amplitude, σortho as a function of Pe and
OSR ω, respectively, and indicate liquid (open symbols)
and solidlike (closed symbols) regimes. While for low Pe
we mainly probe solidlike responses, as the terminal flow
regime in OSR is outside of the experimental window, as Pe
is increased the relaxation due to convective cage release
(or shear induced out-of-cage diffusion) dominates the
response, and liquidlike behavior is manifested at low OSR
ω. Interestingly, at high steady shear Pe and low OSR ω we
detect (beyond experimental error) a reentrant solidlike
response and an increase of σortho with Pe [Figs. 2(a)
and 2(b)]. This response, barely detectable at ϕ ¼ 0.6

FIG. 1 (color online). (a) The orthogonal frequency sweeps at
ϕ ¼ 0.61 for Pe ¼ 2 × 10−1 (filled star), 2 × 10−2 (filled diago-
nal), 2 × 10−3 (filled circle), and 2 × 10−4 (filled square). SROFS
data at ϕ ¼ 0.60 (b), ϕ ¼ 0.61 (c), and ϕ ¼ 0.64 (d). The color
map in (a),(b),(c), and (d) from blue to red indicates steady shear
from low to high Pe. Solid black lines indicate G0 (closed/half
closed symbols) and G00 (open symbols) fits for G00 > G0.
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[Fig. 1(b)], is clearly seen at ϕ ¼ 0.61 [Figs. 1(c), and 2(a)
and 2(b)] and becomes more pronounced at the highest
ϕ ¼ 0.64 [Fig. 1(d)].
Figure 3(a) displays the flow curves at different volume

fractions (lines) together with the steady state stress reached
before the superposition rheometry was performed (closed
symbols). The crossover frequency ωc is plotted for all ϕ as
a function of Pe in Fig. 3(b). As seen here, ωc exhibits a
clear linear dependence with Pe over three decades for all
ϕ. Interestingly, the crossover frequency is also ϕ inde-
pendent, suggesting that the in-cage to out-of-cage tran-
sition time is essentially not changing within the glassy
region (ϕ ¼ 0.6 to 0.64) and for Pe < 1 studied here.

The horizontal and vertical scaling factors used in obtaining
the scaling for SROFS (Fig. 1) are depicted in Figs. 3(c)
and 3(d). In agreement with ωc, the horizontal shift factor a
rescaling time, also varies linearly with Pe [Fig. 3(c)]. In
analogy with time-temperature superposition in polymers
where the horizontal shifting factor relates to the temper-
ature dependent diffusion coefficient [38], here a reflects
the shear rate dependence of the transition from an in-cage
to an out-of-cage motion. These findings are in agreement
with the linear scaling predicted by MCT [12,39] for HS
glasses, although confocal microscopy experiments with
similar PMMA particles at low Pe shear have shown a
power law exponent for the long time diffusion that ranges
from 0.8 [23] to 1 [24].
As b is used to shift the plateau modulus it reflects the

effect of shear on the in-cage free volume, similarly with
the TTS where such a scaling factor represents the temper-
ature dependence of the density [38]. Hence, b, which
follows the flow curve dependence [Fig. 3(d)], is linked to
the maximum limit of in-cage particle displacements prior
to yielding and convective cage release. For the highest ϕ
(¼0.64), b≃ 1 indicating the lower deformability under
shear before cage release due to the smaller in-cage free
volume. These observations are in line with reports of
microscopic particle rearrangements in similar near-HS
glasses by the technique of light scattering echo [19],
where, upon increasing ϕ, irreversible rearrangements grow
much sharper beyond a critical yield strain, suggesting that
cages break more abruptly and the system exhibits a more
brittle yielding at the microscopic level.
To further clarify the experimental results, and to

rationalize deviations observed from a simple linear
scaling, we resorted to BD simulations to examine
shear-induced dynamics at ϕ ¼ 0.62. In Fig. 4(a) we plot
the average mean square displacement hΔr2i from BD
simulations at rest and for different Pe as a function of
t=tB. At short times we detect a drop of hΔr2i with
increasing Pe [arrow in Fig. 4(a)] due to a shear-induced
suppression of in-cage diffusivity first reported in
Ref. [7]. When converted to viscoelastic moduli, using
the generalized Stokes-Einstein (GSE) relation [40],
jG�ðωÞj ≈ kBT=πa(Δr2ð1=ωÞ)Γ½1þ αðωÞ� [where αðωÞ≡
d ln (Δr2ðtÞ)=d ln t at ω ¼ 1=t], such a decrease of short-
time in-cage motion is manifested as an increase of G00
with Pe at high OSR ω [arrow in Fig. 4(b)]. This is in
agreement with SROFS experiments (Fig. 1) and, hence,
verify that the high frequency deviations in G00 are linked
to such shear-induced slowing down at short-time scales,
while hydrodynamic interactions (HI) are not important.
The phenomenon is microscopically attributed to the
buildup of structural anisotropy under shear [7], as shown
in the 2D projection of the difference of the pair correlation
function, gðrÞ under shear from that at rest [Fig. 4(c)] in
the velocity-gradient (xy) plane. Similarly, temperature
induced structural changes in supramolecular polymers

FIG. 2 (color online). (a) σortho vs Pe atω ¼ 0.1 (filled diagonal),
1 (filled circle), and 10 rad=s (filled square). (b) σortho vs ω at
Pe ¼ 1 (filled diagonal), 0.02 (filled star), 2 × 10−4 (filled circle),
and 0 (filled square) for ϕ ¼ 0.61. Closed symbols indicate
solidlike response (G0 > G00Þ and open symbols a liquidlike
response (G0 < G00).

FIG. 3 (color online). (a) Flow curves superimposed with the
orthogonal steady state stress at different Pe [ϕ ¼ 0.64 (−),
ϕ ¼ 0.61 (−), ϕ ¼ 0.60 (−)]. (−) indicates the flow curve at
ϕ ¼ 0.635 with the sudden upturn indicative of shear thickening.
(b) Crossover frequency ωc vs Pe. The horizontal shifting factor a
and (d) the vertical shifting factor b used in obtaining the scaling
for SROFS (Fig. 1). The vertical dashed lines indicate the
frequency regime where ωc is accessible. The symbols represent
ϕ ¼ 0.64 (filled square), ϕ ¼ 0.61 (filled diagonal), and ϕ ¼
0.60 (filled circle).
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were considered to be the origin of deviations at high
frequencies observed in G00 when trying TTS [41].
Whereas BD simulations nicely capture and explain the

experimental findings at high ω they do not agree with the
experimental observations for ω < ωc and high steady
shear Pe [as indicated by the vertical dashed lines in
Fig. 4(a) and 4(b) to separate the two regimes]. At long
times, hΔr2i increases linearly with time, leading to
Maxwell type terminal flow with G00 and G0 following
power law slopes of 1 and 2 withω, respectively [Fig. 4(b)].
Such simple flow response is markedly different from
superposition rheometry experiments, where G0 and G00
never acquire these terminal slopes. The discrepancy is
becoming more pronounced at higher ϕ’s, where the low ω
regime with G00 > G0 is essentially absent [Fig. 1(d)] and
the slopes of G0 and G00 merge and decrease towards ∼0.5,
indicative of a power law dependence of the relaxation
spectrum. This broad spectrum found in the experiments
could be caused by the presence of of hydroclusters
induced by hydrodynamic interactions [3] that are absent
in the BD simulations. Moreover, hydroclusters lead to a
shear thickening, which was indeed detected in experi-
ments [Fig. 3(a), for ϕ ¼ 0.635] at high Pe. Therefore, it
seems reasonable to assume that the onset of hydrocluster
formation is picked up in the superposition rheology data.
Hence, whereas there are some deviations from perfect

overlap in SROFS, possibly due to hydroclusters at low ω
and an effect of cage deformation on the β relaxation at

high ω, most of the effect of flow can be quite nicely scaled
linearly. In particular, the crossover frequency ωc, which
will govern the manner in which the system flows, scales
linearly with the magnitude of the flow rate which shows
that this is a convective effect. In analogy with entangled
polymers where convective constraint release modifies the
tube relaxation time under shear into 1=τ ¼ 1=t0 þ ε_γ
[42,43] (t0 is the internal relaxation time at rest and ε a
constant) similar dependence had indeed been proposed for
the structural relaxation in concentrated colloidal suspen-
sions and glasses [12,20]. For a system with very long (or
infinite) α relaxation, such as colloidal glasses, shear-
induced flow governs the microscopic dynamics as a
consequence of convective cage release of particles. ωc
(∼1=τ) provides a measure of this relaxation time corre-
sponding to the transition from in-cage to out-of-cage
motion (as indicated by the GSE conversion), and scales
linearly with Pe with limPe→0ωc ¼ 0 congruent with an
infinite α relaxation time ðt0 ¼ tα → ∞Þ in a quiescent
glass. Figure 4(d) shows the relaxation times under shear
deduced from ωc both from OSR experiments and BD
simulations, the two having the same linear decrease but a
difference that may be attributable to HI. For comparison,
Fig. 4(d) includes the data from Ref. [23], who reported a
structural relaxation time tα and the transition to out-of-
cage diffusion t2, both, however, exhibiting clearly weaker
power law dependences. The terminal relaxation time τ
obtained here should be lesser than tα and comparable
to t2 from Ref. [23]; hence, the proximity of τ to t2 in
Fig. 4(d) is reasonable, although it is still unclear why a
lower power law exponent (<1) was detected in those
experiments [23]. The rheological measurements do aver-
age over the entire sample, whereas the confocal experi-
ments are limited to imaging relatively close to the wall of
the flow cell.
Concluding, utilizing orthogonal superposition rheom-

etry we are able to measure for the first time the full
viscoelastic spectra of a sheared colloidal glass and obtain a
scaled map of the dynamics of the system through a strain
rate-orthogonal frequency superposition. Through the scal-
ing of the crossover frequency ωc and the shift factor b this
method revealed unambiguously a linear dependence of the
terminal relaxation time on the shear rate due to a
convective cage release. Moreover, SROFS spectra at high
frequencies provided an independent verification of the
constriction of short-time in-cage motion under steady
shear due to cage deformation [7], while comparison with
BD simulations suggests that deviations from a terminal
regime may be linked to the existence of small hydro-
clusters. Our findings provide valuable input to theoretical
models and insights for the understanding of other soft
matter or even metallic glasses under flow.
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FIG. 4 (color online). (a) Mean square displacement from BD
simulations for ϕ ¼ 0.62 when Pe ¼ 0 (−), 0.01 (−), and 0.1 (−)
during steady flow. (b) Shear rate orthogonal frequency super-
position data deduced from BD.G0 (−) and G00 (· − ·) obtained by
converting MSD data of (a) for Pe ¼ 0 (−), 0.01 (−), and 0.1 (−)
[40]. (c) gðrÞ in the velocity-gradient plane for Pe ¼ 0.1 in steady
state flow. (d) tc=tB calculated from ωc for ϕ ¼ 0.64 (filled
square), ϕ ¼ 0.61 (filled diagonal), and ϕ ¼ 0.60 (filled circle).
(black filled triangle) is the tc=tB extracted from BD simulation
for ϕ ¼ 0.62. (square), (star) represents tα=tB and t2=tB, respec-
tively, for ϕ ¼ 0.62 calculated from Ref. [23].
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