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Hydrodynamic correlations in shear flow: Multiparticle-collision-dynamics simulation study
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The nonequilibrium hydrodynamic correlations of a multiparticle-collision-dynamics (MPC) fluid in shear flow

are studied by analytical calculations and simulations. The Navier-Stokes equations for a MPC fluid are linearized

about the shear flow and the hydrodynamic modes are evaluated as an expansion in the wave vector. The shear-rate

dependence and anisotropy of the transverse and longitudinal velocity correlations are analyzed. We demonstrate

that hydrodynamic correlations in shear flow are anisotropic, specifically, the two transverse modes are no longer

identical. In addition, our simulations reveal the directional dependence of the frequency and attenuation of the

longitudinal velocity correlation function. Furthermore, the velocity autocorrelation functions of a tagged fluid

particle in shear flow are determined. The simulation results for various hydrodynamic correlations agree very

well with the theoretical predictions.
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I. INTRODUCTION

The thermodynamics of systems far from equilibrium has

drawn growing interest in the past couple of decades [1]. Sev-

eral nonequilibrium relations, collectively called fluctuation

relations, have been derived for transient and steady nonequi-

librium states. These relations have been verified using exactly

solvable models and numerical simulations (see Ref. [1] and

references therein). An interesting class of nonequilibrium

systems is fluids under external fields such as shear flow

and/or a temperature gradient [2]. Considerable progress has

been achieved in understanding these systems using hydro-

dynamics calculations [3–8], numerical simulations [9–11],

and experiments [12]. For instance, the fluctuation relation for

entropy production has been verified in numerical simulations

of simple fluids under shear flow [11,13]. Apart from satisfy-

ing fluctuation relations, nonequilibrium fluids show several

interesting features that are absent in equilibrium. In particular,

nonequilibrium hydrodynamic correlations in steady states are

long-ranged even for fluids far from critical points [3,4,7,9,14].

In addition, these correlations are anisotropic, in contrast to

equilibrium correlations in simple fluids. A consequence of

the long-range nature of the correlations is the nonintensivity

of pressure fluctuations [5].

Computer simulations are extremely valuable to study

nonequilibrium phenomena. In particular, recently devel-

oped mesoscale hydrodynamic simulation approaches, such

as lattice Boltzmann [15–17], dissipative particle dynam-

ics (DPD) [18–20], or multiparticle collision dynamics

(MPC) [21–23], permit us to cover large length and long

time scales, and a wide range of external parameters such

as shear rates and temperature gradients. All these approaches

are essentially alternative ways of solving the Navier-Stokes

equations for the fluid dynamics. Common to them is a

simplified, coarse-grained description of the fluid degrees of

freedom while maintaining the essential microscopic physics

on the length scales of interest [23]. By now, the MPC

method has successfully been applied in a broad range of

equilibrium and nonequilibrium simulations of soft matter

systems (see, e.g., Ref. [24] and references therein). In

particular, the hydrodynamic correlations of the MPC fluid

have been determined and it has been shown that they

agree with the solutions of the fluctuating Landau-Lifshitz

Navier-Stokes equations [25]. Moreover, the hydrodynamic

correlations of embedded colloids [26–31] and polymers [32]

have been calculated. Even more, MPC simulations have

been successfully applied to verify the fluctuation relation

for entropy production in shear flows [11]. So far, however,

an analysis of nonequilibrium correlation functions of a

MPC fluid and a comparison with theoretical approaches is

missing.

In this paper, we fill this gap and determine analytically

and by MPC simulations the time-correlation functions of hy-

drodynamic variables of a simple isothermal fluid under shear

flow. We first derive analytical expressions for the respective

correlations by linearizing the Navier-Stokes equations. To this

end, we follow the methods employed in Refs. [3,8], where adi-

abatic or granular fluids are considered. Here, the isothermal

approach is simpler, because energy is no longer a conserved

quantity. We restrict ourselves to moderate shear rates for

which the equal-time coupling between hydrodynamic modes

can be ignored [3,10]. Exploiting the MPC method, we then

perform shear flow simulations and calculate the respective

hydrodynamic correlation functions. The primary effect of

shear is the anisotropy of the hydrodynamic correlation

functions, as already predicted in Refs. [3,10]. The frequency

and attenuation of the longitudinal modes become directional

and shear rate dependent. In addition, the degeneracy of the

two transverse modes, present at equilibrium, is removed.

The anisotropy of the longitudinal and transverse velocity

autocorrelations is also manifested in the anisotropy of the

velocity autocorrelations of tagged MPCs particles. Moreover,

the correlation functions show a faster decay than the equi-

librium correlations at long times. By comparison, we find

excellent agreement between the theoretical predictions and

the MPC simulation results.

The article is organized as follows. The theoretical

expressions for the velocity correlation functions are de-

rived in Sec. II. Section III presents simulation re-

sults and a comparison with the theoretical predictions.

Our results and findings are summarized in Sec. IV.

More details of the calculations are presented in the

Appendices.
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II. THEORY

A. Linearized Navier-Stokes equations under shear

The Navier-Stokes equations of an isothermal MPC fluid

are given by

∂ρ

∂t
= −∇ · (ρu), (1)

ρ

[

∂

∂t
+ u · ∇

]

u = −∇p + η∇2u +
ηk

3
∇(∇ · u). (2)

They account for mass and momentum conservation, where

ρ(x,t) is the mass density, u(x,t) the fluid velocity field, and

p(x,t) the pressure field at the position x at time t . The shear

viscosity is denoted as η. The Navier-Stokes equations are

adopted to a non-angular-momentum-conserving MPC fluid,

hence, the kinetic contribution ηk of the shear viscosity appears

in the last term in the right-hand side of Eq. (2), rather than the

viscosity η itself [25,33]. The equations are then linearized by

setting ρ = ρ0 + δρ, p = p0 + δp, and u = u0 + δu, where

u0α = γαβxβ , with the shear-rate tensor γαβ and α,β ∈ {x,y,z}.
We choose the x and y axis of the Cartesian coordinate

system as the flow and the gradient direction, respectively,

such that γαβ = γ̇ δαxδβy , where γ̇ is the shear rate. We use

the summation convention for Greek indices unless otherwise

stated. Equations (1) and (2) can then be written as

[

∂

∂t
+ γαβxβ

∂

∂xα

]

δρ = −ρ0∇ · δu, (3)

ρ0

[

∂

∂t
+ γα′βxβ

∂

∂xα′

]

δuα = −ρ0γαβδuβ −
∂

∂xα

δp

+ η∇2δuα +
ηk

3

∂

∂xα

(∇ · δu).

(4)

Here, we have neglected second-order terms in the fluctuations.

We eliminate δp with the ideal gas equation of state, δp =
c2
T δρ, where cT is the isothermal velocity of sound. By

rescaling the velocity and density according to δu ≡ δu/cT

and δρ ≡ δρ/ρ0, Eqs. (3) and (4) can be written in momentum

space as

[

∂

∂t
− γαβkα

∂

∂kβ

]

δρ̃ = icT k · δũ, (5)

[

∂

∂t
− γα′βkα′

∂

∂kβ

]

δũα = −γαβδũβ + icT kαδρ̃

− νk2δũα −
νk

3
kαkβδũβ , (6)

with the kinematic viscosities ν = η/ρ0, νk = ηk/ρ0. The vari-

ables with a tilde are Fourier-transformed variables according

to the definition

f̃(k) =
∫

d3x eik·x f(x). (7)

We now write the above equations in terms of the lon-

gitudinal and transverse components of the velocity field.

Let δũ = δũ(1)e(1) + δũ(2)e(2) + δũ(3)e(3), where e(1), e(2), and

e(3) are three orthogonal unit vectors. Here, e(1) is chosen

along the direction of k̂, so that δũ(1) is the longitudinal, and

δũ(2) and δũ(3) are the transverse components of the velocity

field. By introducing the vector z̃ = (δρ̃,δũ(1), δũ(2) ,δũ(3))T ,

the Navier-Stokes equations can be written as
[

∂

∂t
− γ̇ kx

∂

∂ky

]

z̃ + Lz̃ = 0. (8)

The explicit form of the matrix L for the choice [3]

e(1) = k/|k|, (9)

e(2) =
[

ŷ − e(1)
y e(1)

]

/k̂⊥, (10)

e(3) = e(1) × e(2) (11)

of the unit vectors is given in Appendix A. Here, ŷ is the unit

vector along the y axis in the Cartesian coordinate system and

k̂⊥ = (k2
x + k2

z )1/2/k, where k = |k|. The solution to the above

equation can be written as the linear combination

z̃(k,t) =
4

∑

i=1

a(i)(k,t)ξ (i)(k) (12)

of the eigenvectors ξ (i)(k), which satisfy the eigenvalue

equation
[

−γ̇ kx

∂

∂ky

+ L

]

ξ (i)(k) = λiξ
(i)(k). (13)

Let η(i)(k) be the corresponding left eigenvectors such that

4
∑

l=1

η
(i)
l ξ

(j )

l = δij . (14)

The left and right eigenvectors and the eigenvalues can be

calculated using perturbation theory [3] and are given in

Appendix B. Inserting z̃(k,t) from Eq. (12) into Eq. (8) and

using Eq. (13) together with the orthogonality condition in

Eq. (14), we obtain
[

∂

∂t
− γ̇ kx

∂

∂ky

+ λi(k)

]

a(i)(k,t) = 0. (15)

The solution of this equation can be expressed as [8]

a(i)(k,t) = a(i)(k(−t),0) exp

[

−
∫ t

0

dτλi(k(−τ ))

]

, (16)

with the time-dependent k vector, k(t) = (kx,ky − γ̇ tkx,kz)
T .

Using Eqs. (12) and (16) and the relation a(i)(k,0) =
∑4

l=1 η
(i)
l (k)z̃l(k,0), we get

z̃i(k,t) =
4

∑

j=1

Gij (k,t)z̃j (k(−t),0), (17)

where the propagator Gij (k,t) is defined as

Gij (k,t) =
4

∑

l=1

ξ
(l)
i (k)η

(l)
j (k(−t)) exp

[

−
∫ t

0

dτλl(k(−τ ))

]

.

(18)
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In order to compare with simulation results, it is convenient to

rewrite Eq. (17) by setting k = k(t), i.e., by replacing ky by

ky − γ̇ tkx . We then get

z̃i(k(t),t) =
4

∑

j=1

Gij (k(t),t)z̃j (k,0), (19)

with

Gij (k(t),t) =
4

∑

l=1

ξ
(l)
i (k(t))η

(l)
j (k) exp

[

−
∫ t

0

dτλl(k(τ ))

]

,

(20)

using [
∫ t

0
dτλi(k(−τ ))]

k=k(t)
=

∫ t

0
dτλi(k(τ )). The explicit

form of Gij (k(t),t) can be obtained from the eigenvectors

{ξ ,η} and the eigenvalues λl given in Appendix B. Note that

the solution given by Eq. (19) represents the evolution of the

hydrodynamic variables in the time-dependent reference frame

in the k space.

B. Hydrodynamic correlation functions

The correlations of the hydrodynamic variables are de-

fined as Cij (k,k′,t) = 〈z̃i(k(t),t)z̃j (k′,0)〉, and become with

Eq. (19)

Cij (k,k′,t) =
4

∑

l=1

Gil(k(t),t)〈z̃l(k,0)z̃j (k′,0)〉. (21)

The correlations 〈z̃i(k,0)z̃j (−k,0)〉 vanishes at equilibrium,

i.e., γ̇ = 0, for i 	= j . However, they are, in general, nonzero

for γ̇ 	= 0. We consider only small shear rates γ̇ � νk2, for

which these cross-correlations can be neglected, as discussed

in Refs. [3,10]. Hence, the correlation functions can be written

as Cij (k,k′,t) ≃ (2π )3δijδ(k + k′)Cii(k,t), where Cii(k,t) =
〈z̃i(k,0)z̃i(−k,0)〉Gii(k(t),t). Using the explicit expressions

for the propagators Gii(k(t),t), the correlation functions can

be written as

C11(k,t) =
ρ0kBT

c2
T

(

k(t)

k

)1/2

e− 1
2
ν̃χ (k,t) cos [cT φ(k,t)], (22)

C22(k,t) =
c2
T

ρ2
0

C11(k,t), (23)

C33(k,t) =
kBT

ρ0

(

k

k(t)

)

e−νχ (k,t), (24)

C44(k,t) =
kBT

ρ0

e−νχ (k,t), (25)

where φ(k,t) and χ (k,t) are given by

φ(k,t) =
1

2γ̇ kx

[

[kyk − ky(t)k(t)]

− k2
⊥ ln

(

ky(t) + k(t)

ky + k

)]

, (26)

χ (k,t) = k2t − γ̇ kxky t
2 +

1

3
γ̇ 2k2

x t
3, (27)

and k(t) = |k(t)|. Here, ν̃ = ν + νk/3, and the equilib-

rium relations 〈z̃1(k,0)z̃1(−k,0)〉 = ρ0kBT c−2
T and

〈z̃i(k,0)z̃i(−k,0)〉 = ρ−1
0 kBT for i = 2,3,4 have been

employed. These expressions can be derived using fluctuating

hydrodynamics for a MPC fluid [25]; however, we do not

present the derivations here.

A few remarks on the correlation functions given by

Eqs. (22)–(25) are in order. In the limit γ̇ → 0, we get

φ(k,t) → kt and χ (k,t) → k2t , and therefore the correlation

functions are reduced to the corresponding equilibrium rela-

tions [25,34] to O(k2). In the absence of shear, the correlation

functions for an isothermal MPC fluid can be obtained for

all orders in k; the explicit expressions for the velocity

autocorrelation functions are provided in Ref. [25]. We also

note that the expression for C33(k,t) remains exact for all shear

rates within the order we are working at, even if the neglected

equal-time correlations of the form 〈z̃i(k,0)z̃j (−k,0)〉 for

i 	= j are taken into account. By the same token, C44(k,t)

is exact for all shear rates for kz = 0.

C. Velocity correlations in real space

From Eq. (17), the velocity correlation function follows as

〈δũ(k,t) · δũ(k′,0)〉 = (2π )3δ(k(−t) + k′)Cu(k,t), (28)

with the abbreviation

Cu(k,t) =
4

∑

i=2

Cii(k(−t),t)e(i−1)(k) · e(i−1)(k(−t)) (29)

and by using Cij (k,t) ≃ 0 for i 	= j . The velocity autocorre-

lation in real space is then given by

〈δu(x,t) · δu(0,0)〉 =
1

(2π )3

∫

d3kCu(k,t)e−ik·x. (30)

The velocity autocorrelation function C(t) = 〈v(t) · v(0)〉 of

a tagged particle of velocity v(t) can be obtained by setting

v(t) = u(r,t), where r is the position of the tagged particle,

and averaging over all its positions r. Hence, we obtain

C(t) =
1

(2π )3

∫

d3kCu(k,t)〈e−ik·r〉, (31)

with the definition 〈eik·r〉 =
∫

d3rP (r,t)e−ik·r, and P (r,t) the

distribution function of the position of the tagged particle.

Using the Fourier representation of P (r,t), we get 〈e−ik·r〉 =
P (k,t). In shear flow, P (k,t) follows from the advective

diffusion equation [35]
[

∂

∂t
− γ̇ kx

∂

∂ky

]

P (k,t) = −Dk2P (k,t), (32)

where D is the diffusion coefficient. The solution of the

equation can be expressed as

P (k,t) = P (k(−t),0) exp

[

−D

∫ t

0

dτk2(−τ )

]

. (33)

Then, Eq. (31) yields

C(t) =
1

(2π )3

∫

d3k Cu(k,t)P (k(−t),0) (34)

× exp

[

−D

∫ t

0

dτk2(−τ )

]

. (35)
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By changing the integration variable from k to k(t), and

using the fact that the Jacobian of the transformation is unity,

we get

C(t) =
1

(2π )3

∫

d3k Cu(k(t),t) exp

[

−D

∫ t

0

dτk2(τ )

]

(36)

by using P (k,0) = 1 [36].

So far, we considered infinitely large systems. In computer

simulations, however, finite-size systems are used with typi-

cally periodic boundary conditions. This leads to a discrete set

kn of wave vectors, with kα,n = 2πnα/L, where L is the length

of the cubic simulation box of volume V = L3, nα ∈ Z, and

kn 	= 0. Hence, the correlation function becomes

C(t) =
1

V

∞
∑

kn=−∞

Cu(kn(t),t) exp

[

−D

∫ t

0

dτk2
n(τ )

]

. (37)

The velocity autocorrelation function in shear flow is

anisotropic. Therefore, we write the above equation in terms

of the components corresponding to the three orthogonal

directions as

Cα(t) =
1

V

∞
∑

kn=−∞

3
∑

l=1

Cjj (kn,t)e
(l)
α (kn)e(l)

α (kn(t)), (38)

where j = l + 1. Note that index α is not summed over.

Since MPC is a particle-based mesoscale simulation method,

the validity of the Navier-Stokes equation breaks down at

the level of a collision cell [25]. Therefore, the k values in the

summation in Eq. (38) are limited by a cutoff corresponding

to the smallest hydrodynamic length scale. Alternative but

similar approaches to evaluate the velocity autocorrelations of

a tagged fluid particle can be found in Refs. [8,10].

III. SIMULATIONS

A. Multiparticle collision dynamics

In the MPC approach, the fluid is represented by point-

particles [22,23]. Their time evolution proceeds in two

independent steps, namely streaming and collision. In the

streaming step, the particles move ballistically, i.e., the particle

positions are updated as

xi(t + h) = xi(t) + hvi(t), (39)

where h is the collision-time step. Here, xi denotes the position

of particle i, vi its velocity, and i ∈ {1, . . . ,N}, with the total

number of particles N . In the collision step, the particles are

grouped into cubic cells of length a, and a rotation of their

relative velocities—with respect to the center-of-mass velocity

of the particular cell—is performed. Hence, the new velocities

are

vi(t + h) = Vcm(t) + R(α)[vi(t) − Vcm(t)]. (40)

Here, Vcm(t) is the center-of-mass velocity of the cell that

contains the particle i and R(α) is the rotation matrix, with the

axis of rotation taken as a random unit vector. A random shift

of the collision cell lattice is performed at every collision step

to ensure Galilean invariance [23,37].

We perform isothermal simulations, where temperature

is maintained by the cell-level Maxwell-Boltzmann-scaling

(MBS) approach, which has been shown to yield a canonical

ensemble [24,38]. The hydrodynamic fluctuations of the

MPC fluid supplemented by the MBS method is known to

be consistent with the linearized Navier-Stokes equation in

equilibrium [24,25]. Shear flow is implemented by Lees-

Edwards boundary conditions [39–41]. The time step of our

simulations is chosen as h/τ = 0.1, with the unit of time

τ =
√

ma2/kBT , to ensure a large Schmidt number [42],

and the average number of particles in a collision cell is set

to 10. The numerical values of the transport coefficients for

this choice of the simulation parameters are ν = 0.870a2/τ ,

ν̃ = 0.887a2/τ , D = 0.051a2/τ , cT = 1.0a/τ [23].

B. Hydrodynamic correlations

The density and velocity fields in k space are defined as

ρ̃(k,t) =
N

∑

i=1

eik(t)·xi , (41)

δũ(k,t) =
N

∑

i=1

[vi − u0(xi)]e
ik(t)·xi , (42)

where u0(x) = γ̇ yx̂ is the mean velocity field. Note that we

use the time-dependent k vector k(t) = (kx,ky − γ̇ tkx,kz),

so that the allowed k vectors are consistent with the Lees-

Edwards boundary conditions. The direction as well as the

magnitude of this k vector change in time. The transverse

and longitudinal components of the velocity field are then de-

fined as δu(i)(k(t),t) = e(i)(k(t)) · δũ(k,t). Here, the mutually

orthogonal unit vectors e(i) are given by Eqs. (9)–(11). For

kx 	= 0 and γ̇ 	= 0, the vectors e(1) and e(2) change direction

with time in the plane normal to e(3), which itself is constant

in time.

A few notes on the calculation of autocorrelation functions

in shear flow implemented via the Lees-Edwards boundary

condition are in order. In equilibrium simulations, the origin

of time is arbitrary, and therefore the moving-time-origin

scheme [40] for calculating time correlation functions can be

employed to improve statistics and to avoid storing position

and velocity coordinates of the particles. However, in our

simulations, the k vector is taken as a function of time and

the time origin is taken as the time at which the image of a

particle in the infinite periodic system is given by x′
i = xi + L,

where xi is the position of the particle in the primary simulation

box and L = L(nx, ny, nz)
T . Therefore, averages have to be

taken only over the allowed time origins. In addition, in order

to be consistent with the definition of the time-dependent k

vector, the position coordinate in the gradient direction has

to be taken in the range [−Ly/2, Ly/2]. However, the usual

moving-time-origin scheme can be employed in the evaluation

of real-space time-correlation functions.

1. Correlation functions in momentum space

Figure 1 shows the numerically evaluated transverse ve-

locity correlation function given by Eq. (25). As is evident

from the theoretical expression, there are primarily two time

regimes for the decay of the correlations. For t ≪ 1/γ̇ , the
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FIG. 1. (Color online) Theoretical predictions of the trans-

verse velocity correlation function along e(3)(k) [see Eqs. (11)

and (25)]. The lines (solid) correspond to the shear rates γ̇ τ =
0.0, 0.001, 0.01, 0.1, 1.0 (right to left). In the main figure, the wave

vector components are kx = 2π/60 and ky = kz = 0, and in the inset

kx = ky = 2π/60 and kz = 0.

decay is dominated by the term linear in t in the exponential

[see Eq. (27)] and therefore is identical to the decay of the

correlation function in equilibrium. However, for t ≫ 1/γ̇ ,

the decay is dominated by the term proportional to t3 and is

characteristic of the shear flow. This term originates from the

advection term in the Navier-Stokes equation and results in

several interesting features such as a faster decaying long-time

tail, with a power-law t−5/2, of the velocity autocorrelation

function of a tagged fluid particle [10], and a renormalization

of the viscosity [43].

In Fig. 2 we compare the transverse velocity correlations

obtained from the simulations and the theoretical expressions.

In contrast to equilibrium correlations, the velocity autocorre-

lations of the two transverse components in shear flow are not

identical. The transverse velocity component (e(3) direction)

perpendicular to the gradient direction decays slower than

the second component (e(2) direction) perpendicular to the

longitudinal direction for long times (t ≫ 1/γ̇ ). Even though

the distinction between the two transverse components is

apparent from our simulations, it may be ignored in deriving

the long-time tail exponents for the velocity autocorrelation

function of a tagged fluid particle [10,43]. The transverse

correlations, as mentioned in the previous paragraph, decay

similar to those in equilibrium for t ≪ 1/γ̇ and faster for

t ≫ 1/γ̇ . For t ≈ 1/γ̇ , the decay depends on the direction of

the k vector, i.e., on the relative sign of kx and ky . For sgn(kx) =
sgn(ky), both transverse correlations decay slower than the

equilibrium correlations, and faster otherwise (see insets of

Figs. 1 and 2). For ky = 0, the transverse correlation functions

decay faster than the equilibrium correlations at all times.

The longitudinal velocity correlation function corresponds

to sound propagation in the fluid. There are two effects of

shear flow on the propagation of sound in an isothermal

fluid—the modification of the sound damping factor and the

change in the sound frequency and velocity (Doppler effect),

both of which depend on the shear rate and the direction

10
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10
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C
v
(k

,t
)

t/τ

10
-1

10
0

 0  50  100  150  200

FIG. 2. (Color online) Theoretical and simulation results for the

transverse velocity correlation functions along e(2)(k) (blue, dotted)

and e(3)(k) (red, dashed) for the shear rates γ̇ τ = 0.0, 0.005, 0.01

(top to bottom for the main figure and bottom to top for the inset at

t/τ = 100). The two transverse components are identical for γ̇ τ =
0.0, and therefore only one of them (red, dashed) is presented. The

solid lines (black) represent the theoretical results. In the main figure,

the wave-vector components are kx = 2π/L and ky = kz = 0, and in

the inset kx = ky = 2π/L and kz = 0.

of propagation. Figure 3 shows the variation of longitudinal

velocity correlations in the flow direction (ky = kz = 0) for

different shear rates. The change in the frequency and the faster

attenuation with increasing shear rate is well demonstrated.

Figure 4 displays the anisotropy of the sound propagation.

The frequency decreases when the sound propagation is in

the direction along the flow and increases in the direction

against the flow. The direction dependence of the attenuation

of longitudinal velocity correlations is the same as that of the

transverse velocity correlations. The autocorrelation function

-1
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FIG. 3. (Color online) Longitudinal velocity correlations for the

shear rates γ̇ τ = 0.0 (red, dashed) 0.005 (blue, dotted), and 0.01

(green, dotted-dashed). The solid lines (black) represent theoretical

results. The wave-vector components are kx = 2π/L and ky =
kz = 0.
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FIG. 4. (Color online) Longitudinal velocity correlations for

γ̇ τ = 0.0, kx = ky = 2π/L (red, dashed), γ̇ τ = 0.005, kx = ky =
2π/L (blue, dotted), and γ̇ τ = 0.005, kx = −ky = 2π/L (green,

dotted-dashed) . kz = 0 for all the curves. The solid (back) lines

represent the theoretical results.

of the density fluctuations shows an identical behavior as the

longitudinal velocity correlations, and therefore we do present

the results here.

2. Long-time behavior of velocity correlations

Figure 5 shows velocity autocorrelation functions of a

tagged particle. Note that we consider the thermal velocity

of the particle, i.e., the velocity with respect to the mean flow

velocity. Evidently, the correlations in the three orthogonal

directions are not identical. We find excellent agreement

between theory and simulation results for long times. The

deviations at short times are caused on the one hand by the

fact that the theoretical hydrodynamic correlations are only

accurate toO(k2). On the other hand, partition of the MPC fluid

in collision cells leads to a breakdown of hydrodynamics at

short times and length scales below the collision-cell size [25].

However, the long-time behavior is determined by small k

values, i.e., large length scales, which are correctly reproduced

in the simulations.

IV. SUMMARY AND CONCLUSIONS

We have studied the nonequilibrium hydrodynamic time

correlations of an isothermal MPC fluid under shear flow.

We find good agreement between simulation results and

theoretical predictions based on the linearized Navier-Stokes

equations for moderate shear rates. We confirm that hydrody-

namic correlations in shear flow are anisotropic, in agreement

with previous studies [3,8,9]. Specifically, and in contrast

to equilibrium correlations, the time correlations of the two

transverse modes in Fourier space are no longer identical. In

addition, our simulations reveal the directional dependence

of the frequency and attenuation of the longitudinal velocity

correlation function. As a consequence, the velocity autocorre-

lation function of a tracer fluid particle (MPC particle) is also

anisotropic. The agreement between analytical calculations

and simulations confirms that MPC is a suitable approach

to study hydrodynamic properties of simple fluids under

nonequilibrium conditions.

Our studies are restricted to moderate shear rates, where

equal-time correlations of the hydrodynamic variables can be

approximated by the corresponding equilibrium values. For

high shear rates, this approximation does not hold and we

observe significant deviations of the simulation results from

the theoretical expressions. In order to theoretically evaluate

the equal-time and autocorrelation functions for high shear

rates, the fluctuating part of the stress tensor has to be explicitly

included in the Navier-Stokes equations [3], which we took

into account only implicitly. In addition, it is also necessary

to take into account the density dependence of the viscosity

in linearizing the Navier-Stokes equation. These issues will be

addressed in future publications.
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APPENDIX A: THE HYDRODYNAMIC MATRIX

The evolution of the hydrodynamic variables are given by

[

∂

∂t
− γ̇ kx

∂

∂ky

]

z̃ + Lz̃ = 0, (A1)
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FIG. 5. (Color online) Velocity autocorrelation functions of a tagged particle along the various spatial directions. The shear rate is γ̇ τ =
0.01. Simulation results are represented by open circles and the theoretical prediction by solid lines.
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where L = −ikL1 + k2L2 + γ̇L3, with

L1 =







0 cT 0 0

cT 0 0 0

0 0 0 0

0 0 0 0






,

L2 =







0 0 0 0

0 ν̃ 0 0

0 0 ν 0

0 0 0 ν






, (A2)

L3 =







0 0 0 0

0 Ŵ11 Ŵ12 Ŵ13

0 Ŵ21 Ŵ22 Ŵ23

0 Ŵ31 Ŵ32 Ŵ33






,

ν̃ = ν + νk/3, and the matrix Ŵ

γ̇ Ŵij = e(i)
m γmle

(j )

l − e(i)
n γmlkm

∂

∂kl

e(j )
n . (A3)

For the particular choice of the unit vectors e(i) as given in

Eqs. (9)–(11), the matrix Ŵ takes the form

Ŵ =







kxky/k2 2kxk⊥/k2 0

−kx/k⊥ −kxky/k2 0

−kykz/kk⊥ −kz/k 0






, (A4)

where k2
⊥ = k2

x + k2
z .

APPENDIX B: EIGENVALUES AND EIGENVECTORS

The eigenvalue equation, Eq. (13), can be solved perturba-

tively by expanding ξ (m) and λm in powers of k:

ξ (m) = ξ
(m)
0 + kξ

(m)
1 + . . .

(B1)
λm = kλm,0 + k2λm,1 + . . .

The solution to the order O(k2) is given by

λ1 = −icT k +
1

2
(ν̃k2 + γ̇ kxky/k2),

λ2 = +icT k +
1

2
(ν̃k2 + γ̇ kxky/k2),

λ3 = νk2 − γ̇ kxky/k2, λ4 = νk2, (B2)

ξ (1) =
1

√
2

(1,1,0,0)T , ξ (2) =
1

√
2

(1, − 1,0,0)T ,

ξ (3) = (0,0,1,M)T , ξ (4) = (0,0,0,1)T ,

where

M(k) = −
kkz

kxk⊥
arctan

(

ky

k⊥

)

. (B3)

The left eigenvectors η(i), which satisfy the condition
∑4

l=1 η
(i)
l ξ

(j )

l = δij , are given by

η(m) = ξ (m)T , for m = 1, 2, (B4)

and

η(3) = (0, 0, 1, 0), η(4) = (0, 0, − M,1). (B5)
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