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1 Introduction

Since the first theoretical proposals of a quantum computer in the 1980’s and the subse-

quent discovery of several quantum algorithms suitable for execution on quantum com-

puters in the 1990’s, quantum computing has developed into a rapidly growing area of

research. The discovery of algorithms like Shor’s algorithm for number factoring and

Grover’s search algorithm [1, 2] put forward that quantum algorithms running on a quan-

tum computer are able to perform specific computational tasks much faster than algo-

rithms on a classical computer. The theoretical concept of a quantum Turing machine,

also known as the universal quantum computer, was presented by David Deutsch suggest-

ing that the internal state of a quantum computer could be controlled by quantum gates

[3].

In general, quantum computers employ quantum mechanical processes such as quan-

tum interference and/or quantum entanglement in order to perform computations. Instead

of bits, as in a classical computer, quantum computers use quantum bits called qubits.

Classical bits can only assume two classical distinct states, namely 0 and 1. The state of

a qubit, however, can be described by a two-dimensional vector of length one in a two-

dimensional vector space spanned by the basis vectors |0〉 and |1〉. Qubits can be in state

|0〉, state |1〉 or in any superposition of the two basis states a0|0〉+ a1|1〉 where a0 and a1

are complex numbers [4]. The complex numbers suggest that an infinite amount of infor-

mation can be stored in a qubit. However, any actual measurement of a qubit will always

yield either the result 0 or 1 i.e. the information encoded in the superposition is lost. In

order for a quantum computer to be of any practical use, it needs to be able to store and

process more than one single qubit. The internal state of a quantum computer consisting

of L qubits is given by a unit vector in a D-dimensional space, wherein D = 2L.

In a classical computer, information (i.e. bits) is processed by logical gates. In a

quantum gate computer the qubits are manipulated by applying a series of quantum gates

that correspond to unitary transformations acting on individual qubits. The internal state

of a quantum computer evolves in time by applying a sequence of unitary transformations.

Such a sequence is called a quantum algorithm. When all unitary transformations of a

quantum algorithm have been executed, the time evolution of the quantum computer is

interrupted by measuring the values of all individual qubits. The values for the qubits will

either be 0 or 1 and the information encoded in the superposition of the state is lost. The

computational power of a quantum computer results from the fact that each application of

a unitary transformation can change all amplitudes of the unit vector simultaneously [4].

Building an actual quantum gate computer is a challenging task. The main problem

is that during computation, quantum computers must be isolated from their surrounding

environment, since quantum computers are susceptible to external noise which may lead
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to decoherence [5]. The larger the number of qubits used in a quantum computer the more

likely it is that the information encoded in the state of the quantum computer is lost into

the surrounding environment. To the present day this fact restricts the number of qubits

of a quantum gate computer to very small numbers.

In contrast to the limitations of quantum gate computers it is believed that quantum

computers based on adiabatic quantum computation provide an inherent degree of robust-

ness to decoherence [6]. In adiabatic quantum computing, a quantum system is prepared

in a specific state and then evolved in time so that its final state holds the solution of the

problem considered.

Due to the adiabatic quantum computers’ robustness to decoherence, implementations

using larger numbers of qubits have now become feasible. D-Wave Systems, Inc., a quan-

tum computing company, has built such an adiabatic quantum computer. The newest

model the D-Wave 2X employs over 1000 qubits. D-Wave Systems was founded in 1999

and in 2007 presented the first prototype of a quantum annealing processor, the Orion sys-

tem employing a total of 16 qubits. The first commercially available system, the D-Wave

One, was presented in 2010 employing 128 qubits [7]. Since the presentation of the D-

Wave One, an intense discussion has developed in the quantum computation community

as to whether the D-Wave processor actually uses quantum effects to find the solutions to

problems and whether the expected quantum speedup could possibly be detected.

This work presents the results of optimazation problems solved on a D-Wave 2 Vesu-

vius V7 processor. The obtained results are discussed and compared to simulation results

emulating the processor’s physical behavior. Chapter 2 introduces the principle of adia-

batic quantum computing. Chapter 3 presents a method for simulating the D-Wave Two

processor by solving the time-dependent Schrödinger equation. Chapter 4 provides a

technical description of the working principle of the D-Wave Two processor. Chapter

5 presents the results obtained by the D-Wave Two for random spanning tree problems.

Lastly, in chapter 6, the results of 2-SAT problems obtained from the D-Wave Two proces-

sor are compared to the results of the simulations emulating the D-Wave Two processor.
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2 Adiabatic Quantum Computing

In this chapter the concept of and motivation for adiabatic quantum computing is pre-

sented.

2.1 Introduction

Adiabatic quantum computing is based on the idea to use quantum mechanical processes

to solve problems of optimization. In general, a problem of optimization arises when

one has to choose the best available option from a host of options depending on many

variables and conditions. In physics optimization represents a wide range of problems.

Often the physical problem can be expressed in the form of an energy cost function,

wherein the task of optimization then lies in finding the global minimum of this function.

This corresponds to the state of the physical system with the lowest energy, called the

ground state. The search for the ground state can be very challenging, as the cost function

often depends on a large number of variables and constraints on the variables, which can

lead to frustration in the system. Since the cost function may depend on a large number

of variables, it possesses a large number of local minima, which makes the search for the

ground state very complex [8, 9].

A well known physical optimization problem is finding the ground state of a system

consisting of N Ising spins with frustrated interaction, a so called Ising spin glass. There

are also many complex optimization problems known from computer science. Two ex-

amples are the traveling salesman problem, that is finding the shortest possible path that

visits each city exactly once and the Boolean satisfiability problems (k-SAT problems),

that are the problems of finding whether there is a solution in the form of anN -bit number

that satisfies all Boolean imposed conditions [8].

Without going into detail, the computational complexity of these optimization prob-

lems can be classified. In computational science problem complexity is classified by the

time and memory resources, that are needed to solve the worst case of the problem en-

semble on a classical computer. The above given examples rank in the NP complexity

class except for the two-dimensional Ising spin glass and the 2-SAT problem, which are

both ranked P. For the problems belonging to the class P of polynomially solvable prob-

lems some algorithm can provide a solution in polynomial time. For the problems in the

class of non-deterministic polynomially solvable problems NP it is impossible to verify

the solution in polynomial time [10, 11].

The first idea to use the mechanism of annealing in simulations for optimization prob-

lems was introduced by Kirkpatrick [12] in 1983. The idea of simulated annealing (SA) is

to solve the optimization problems by introducing a temperature variable, which is slowly

lowered during a Monte Carlo simulation. Starting at a high temperature at the beginning
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of the annealing process, the system is allowed to explore the whole configuration space

of the problem. By slowly reducing the value of the temperature variable, the system will

not be trapped in local minima, as the system is able to escape from the local minima by

thermal fluctuations [8, 9].

The idea of quantum annealing (QA) and adiabatic quantum computing is based on

the idea of simulated annealing but instead of employing thermal fluctuations, the method

employs quantum fluctuations as described in the next section.

2.2 Quantum Annealing and Adiabatic Quantum Computation

Quantum annealing in contrast to simulated annealing is based on the idea that instead of

using thermal fluctuations to escape local minima, quantum fluctuations are introduced to

allow the system to escape from local minima by tunneling through the potential barriers.

The quantum system at the beginning of the quantum annealing process is prepared

in the product state of all spin states, which is the ground state of the initial Hamiltonian

as a strong transverse field is applied to introduce quantum fluctuations, which allows for

quantum tunneling between states. During the so called annealing sweep the transverse

field is gradually turned off. If the transverse field is turned off slowly enough, the system

will evolve adiabatically and therefore stay in the ground state of the Hamiltonian. Adi-

abatic quantum computation can be seen as a special case of quantum annealing [9, 13].

When the transverse field is finally turned off completely the system should have reached

the ground state of the classical Ising model that encodes the solution to the original op-

timization problem.

This idea is now presented in the context of the transverse Ising model, as this model

will be the model studied throughout this work. The Hamiltonian of the classical Ising

model with N spins can be written as

Hcl = −
N∑

i,j

Jijσ
z
i σ

z
j −

N∑

i

hziσ
z
i , (1)

where the σz
i represent the spin projections along either the +z or −z direction and take

values +1 (spin up) and -1 (spin down), respectively [10, 14]. Between two Ising spins

located on lattice sites i and j there can be an interaction Jij which will favor that the

spins align parallel if Jij > 0 (ferromagnetic interaction) or anti-parallel if Jij < 0 (anti-

ferromagnetic interaction). Further, every Ising spin σz
i can interact with an external field

hi. The task of optimization now lies in finding the state (configuration of all σz
i ) that

minimizes the energy cost for a given set of couplings Jij and fields hzi .

In order to introduce quantum fluctuations to the classical Ising system, a transverse
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field in the x-direction is applied. This results in the Hamiltonian

H = Hcl +
N∑

i=1

hxi σ
x
i , (2)

where σα
i with α =x,y,z denote the Pauli spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (3)

The vectors spanning the basis for the Ising spins are defined as | ↑〉 =
(

1 0
)T

and

| ↓〉 =
(

0 1
)T

. Note that to introduce quantum fluctuations basically any term that

does not commute with the classical Hamiltonian can be used (e. g. J couplings in the

x-direction). The Hamiltonian used for adiabatic quantum computation reads

H(t) = λ(t)Hcl + (1− λ(t))Htrans

= λ(t)Hcl − (1− λ(t))
∑

i

σx
i . (4)

During the course of annealing λ = t/τ , where τ is the total annealing time, is slowly

turned on (see Fig. 1) [15]. At t = 0, λ = 0 so that the quantum fluctuations dominate.

The ground state of the system at t = 0 is given by the product state of the spins in the

x-direction. Since the ground state is known at t = 0, the quantum system can be easily

initialized in this state. If during the annealing course λ is turned on slowly enough,

the system will evolve adiabatically and will therefore by the adiabatic theorem at all

time remain in the ground state [16, 17]. At the end of the annealing sweep λ = 1 the

Hamiltonian defined by Eq. (4) is reduced toHcl. If the evolution of the quantum system is

adiabatic, then the final state of the system is the ground state of the classical Hamiltonian

Hcl. As Hcl represents the function to be optimized, its ground state encodes the optimal

solution.
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Figure 1: Linear annealing schedule used in the quantum annealing simulations. The

annealing parameter is defined as λ(t) = t/τ , where τ denotes the total annealing time.

2.3 Adiabatic Theorem and Landau-Zener Tunneling

In order to ensure, that at the end of the annealing sweep the final state is the ground state

of the classical Hamiltonian, the evolution needs to evolve adiabatically. The adiabatic

theorem states that if a quantum system is in an instantaneous eigenstate of a Hamiltonian

H(t) at some point in time it will remain in this eigenstate at all time, if the Hamiltonian

H(t) is varied sufficiently slow [17]. In the present case of quantum annealing, this can

be ensured by taking sufficiently long annealing times τ . More precisely, the adiabatic

theorem states that for a quantum system with a non-degenerate spectrum and a minimum

energy gap ∆min between the ground state and the first excited state the annealing time

must satisfy the condition

τ ≫ |〈H(t)〉|max

∆2
min

, (5)

with

|〈H(t)〉|max = max
0≤t≤τ

(∣∣∣∣
〈
φ0(t)

∣∣∣∣
dH(t)

dλ

∣∣∣∣φ1(t)

〉∣∣∣∣
)
, (6)

∆2
min = min

0≤t≤τ

[
∆2(t)

]
, (7)

where φ0 and φ1 are the instantaneous ground state and first excited state of the Hamilto-

nian during the annealing sweep at time t and ∆(t) is the instantaneous gap between the

ground state energy of the state φ0 and the energy of the first excited state φ1 at time t

[9, 18].

For a two-level quantum system Landau-Zener theory gives an estimate of the prob-

ability for a diabatic evolution (a non-adiabatic evolution), which means tunneling out
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of the ground state into an excited state during the annealing sweep. The Landau-Zener

formula can also be used for more general quantum systems (with more than two energy

levels). Its application is well justified for a quantum system, for which the energy gap be-

tween its first excited state and its second excited state is relatively large compared to the

gap between its ground state and its first excited state and if the first excited state is non-

degenerate. Thus, assuming that the Landau-Zener formula gives at least a good indica-

tion of the probability of a diabatic evolution of the quantum system, then the probability

of finding the ground state with quantum annealing is given by Padiabatic = 1 − Pdiabatic,

where Pdiabatic is given by [19, 20, 21]

Pdiabatic = exp(−τ/τc)
τc = (~α(λ)Γ0) /

(
2π∆2

min

)
. (8)

As Eq. (8) shows, the probability for a diabatic evolution decreases for longer annealing

times τ . Further, as can be seen from the characteristic tunneling time τc, the probability

decreases with the minimum gap squared ∆2
min. The characteristic tunneling time τc also

depends on the relative slope α of the two levels as a function of λ(t) and the amplitude

of the transverse field Γ0 at time t = 0 ( in Eq. (4) Γ0 = 1).

From the Landau-Zener formula it becomes apparent that the complexity of finding

the solution to an optimization problem with quantum annealing depends on the minimum

gap ∆min. Therefore it is possible for a fixed annealing time τ to predict the success

probability of quantum annealing if the minimum gap ∆min for the specific problem is

known.
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3 Quantum Spin Dynamics

In this chapter two numerical methods to solve the time-dependent Schrödinger equation

(TDSE) for quantum spin systems are discussed. By solving the TDSE, the dynamical

behavior of the respective system can be computed. In sections 3.1-3.4 we closely fol-

low Ref. [4]. Section 3.5 is devoted to the usage of both algorithms to simulate 2-SAT

problems.

3.1 Time-dependent Schrödinger Equation

In order to study the dynamical behavior of a quantum spin model described by a Hamil-

tonian H(t) one has to solve the TDSE

−i ∂
∂t

|Φ(t)〉 = H(t)|Φ(t)〉, (9)

in units such that ~ = 1 and where |Φ(t)〉 denotes the wave function of the system. The

solution of this equation reads

|Φ(t+∆t) 〉 = U(t+∆t,t)|Φ(t)〉 (10)

= exp+

(
−i
ˆ

H(u)du

)
|Φ(t)〉,

where ∆t is the time step and the time evolution operator U(t+∆t,t) is a unitary matrix

which transforms the state |Φ(t)〉 to |Φ(t +∆t)〉. In order to compute the time evolution

numerically, the time is discretized. To ensure the unitarity of the time evolution operator

the time interval [t, t + ∆t] is split into n subintervals and H(t) is assumed to be piece-

wise constant in these time intervals. For the subinterval [tk,tk+1] the time tk is defined

as tk = t +
∑k

j=0 τj , where τj is the jth time interval over which H(t) is constant. Then

U(t+∆t,t) can be written as

U(t+∆t,t) = U(tn,tn−1)U(tn−1,tn−2)...U(t1,t0), (11)

with U(tj,tj−1) = exp(−iτjH(tj−1+ τj/2)). The number of time steps n that are needed

to ensure that the approximation is unitary, must be chosen carefully. If n is chosen

too big, the solution will not be correct and if chosen too small, it will take up more

computational resources than necessary. From Eq. (10) it becomes clear, that to solve the

TDSE one has to compute matrix exponentials. The solution is an approximation to the

exact solution which becomes better with an increasing number of time intervals n.

In this work two methods for calculatingU(t) are discussed, the Suzuki-Trotter Product-

Formula algorithm and the Full Diagonalization algorithm. Before these two methods are
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explained, conventions about the notation and some general aspects are given in the next

section.

3.2 General Aspects

In order to calculate the evolution of the quantum system with N spins described by

Eq. (4) it is necessary to define the wave function |Φ〉. The wave function is given by the

linear superposition of the direct product states of the N single spin states in the z-basis,

which yields a 2N state vector. The wave function is given by

|Φ〉 = a(↑↑ ... ↑)| ↑↑ ... ↑〉+ a(↓↑ ... ↑)| ↓↑ ... ↑〉+ ...+ a(↑↓ ... ↓)| ↑↓ ... ↓〉
+a(↓↓ ... ↓)| ↓↓ ... ↓〉, (12)

where the complex amplitudes a(↑↑ ... ↑),...,a(↓↓ ... ↓) completely specify the state

of the quantum system. The wave function should be normalized so that 〈Φ|Φ〉 = 1. For

this condition to hold the sum over the squares of the absolute values of the amplitudes

must be
∑

σ1...σN=↑,↓ |a(σ1...σN)|2 = 1. In this representation the first label corresponds

to the first spin of the system.

For the simulation it is more convenient to express the states as binary numbers where

| ↑〉 corresponds to |0〉 and | ↓〉 corresponds to |1〉. Another useful convention from

computer science is to consider the first spin (qubit) as the least significant bit of an integer

index, that runs from 0 to 2N−1. Using this notation the state |Φ〉 defined by Eq. (12) can

be rewritten as

|Φ〉 = a(0 ... 00)|0 ... 00〉+a(0 ... 01)|0 ... 01〉+...+a(1 ... 10)|1 ... 10〉+a(1 ... 11)|1 ... 11〉.
(13)

This binary representation will be used throughout this work. For later use it is helpful

to consider the effect of applying each of these terms on the wave function |Φ〉. In the

Hamiltonian defined by Eq. (4) there are three different kinds of terms, namely two single

spin terms σx
i , σ

z
i and one two spin term σz

i σ
z
j .

Applying σz
i on |Φ〉 (|Φ′〉 = σz

i |Φ〉) reverses the sign of all amplitudes a of the states

of |Φ〉 for which the ith bit of the vector index has the value 1

(
|1〉 = | ↓〉 =

(
0 1

)T)
.

This yields for the amplitudes

a′(•... • 0 • ...•) = +a(•... • 0 • ...•)
a′(•... • 1 • ...•) = −a(•... • 1 • ...•), (14)

where • stands for the unchanged bits.

Applying σx
i on |Φ〉 (|Φ′〉 = σx

i |Φ〉) interchanges the up and down states. For the
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amplitudes it follows that they are obtained by swapping pairs of |Φ〉. This yields

a′(•... • 0 • ...•) = +a(•... • 1 • ...•)
a′(•... • 1 • ...•) = +a(•... • 0 • ...•). (15)

Applying the two-spin term σz
i σ

z
j on |Φ〉 can be calculated analytically. The signs

of the amplitudes are now only changed if the ith and the jth bit of the amplitudes are

different. This yields

a′′(•... • 0 • ... • 0 • ...•) = +a(•... • 0 • ... • 0 • ...•)
a′′(•... • 1 • ... • 0 • ...•) = −a(•... • 1 • ... • 0 • ...•)
a′′(•... • 0 • ... • 1 • ...•) = −a(•... • 0 • ... • 1 • ...•)
a′′(•... • 1 • ... • 1 • ...•) = +a(•... • 1 • ... • 1 • ...•). (16)

With the single and two-spin operations discussed here, the calculation of |Φ′〉 =

H|Φ〉 can be performed easily [4]. This is necessary for the full diagonalization of the

Hamiltonian which is discussed in the next section.

3.3 Full Diagonalization Algorithm

The full diagonalization approach is based on the fact that the Hamiltonian H is an Her-

mitian operator represented by a D × D Hermitian matrix with D = 2N . This implies

that the matrix H has a complete set of eigenvectors and real valued eigenvalues. The

diagonal matrix of the eigenvalues Λ is then given by V †HV = Λ, where V is the uni-

tary matrix of the eigenvectors. The unitary time evolution can then be calculated with

U(t) = exp(−itH) = V exp(−itΛ)V †. This means that if V and Λ are known, the time

evolution can be obtained by matrix multiplications. Therefore, the most straightforward

approach to compute the time evolution U(t) is by diagonalizing H numerically.

The matrix elements of H can be calculated by repeatedly using |Φ′〉 = H|Φ〉 for all

basis vectors |Φ〉. The new vectors |Φ′〉 then give the columns of the matrix H . With the

obtained matrix H , the time evolution of the system can be calculated.

This exact approach is strongly limited by computational resources and therefore can

only be applied for small systems. For small systems it can however be used to check the

results of the Spin Dynamics Simulation based on the Suzuki-Trotter Product-Formula

algorithm introduced in the next section, in order to ensure the correct implementation of

the algorithm.
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3.4 Suzuki-Trotter Product-Formula Algorithm

The Suzuki-Trotter Product-Formula algorithm is based on the expansion of the unitary

matrix exponential [22]

U(t) = exp(−itH) = exp(−it(H1+H2+ ...+HK)) = lim
m−→∞

(
K∏

k=1

exp(−itHk/m)

)m

.

(17)

Equation (17) implies that

Ũ1(t) = e−itH1e−itH2 ...e−itHK , (18)

is a good approximation to U(t), if the time step t is chosen sufficiently small. The Taylor

series of U(t) and Ũ1(t) are identical up to the first order and if all Hi for i = 1, ..., K

are Hermitian the algorithm is unconditionally stable. Ũ1(t) is therefore a first order

approximation of U(t). The accuracy of the approximation can be increased by going to

higher orders. For the simulations in this work, the second order approximation for U(t)

is used

Ũ2(t) = ŨT
1 (t/2)Ũ1(t/2) = e−itHK/2...e−itH1/2e−itH1/2...e−itHK/2. (19)

Since Ũ1(t) is unitary, Ũ2(t) is also unitary and from Eq. (19) it is clear that to calculate

the time evolution it is necessary to calculate the matrix exponentials exp(−itHk/2).

Therefore, the main question is how to choose the Hermitian matrix Hk so that the matrix

exponential can be calculated efficiently .

In this work the Hamiltonian for the quantum system is given by Eq. (4). The Hamil-

tonian contains one two-spin term and two single spin terms. It is convenient to compose

U(t) (see Eq. (17)) into [23]

Ũ(t) = exp(−itH1/2) exp(−itH2) exp(−itH1/2), (20)

which is a second order approximation with

exp(−itH1/2) = exp

(
−it

(
−

N∑

j=1

∑

α=x,z

hαj (t)σ
α
j

)
/2

)
(21)

exp(−itH2) = exp

(
−it

(
−

N∑

jk=1

Jjk(t)σ
z
jσ

z
k

))
, (22)

where hxj (t) = (1 − λ(t))hxj , hzj(t) = λ(t)hzj and Jjk(t) = λ(t)Jjk. Since the spin

operators with different labels commute the sum over the spins can be written as a product.
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Equation (21) can be rewritten as

exp

(
−it

(
−

N∑

j=1

∑

α=x,z

hαj (t)σ
α
j

)
/2

)
=

N∏

j=1

exp

(
it

2

∑

α=x,z

hαj (t)σ
α
j

)
. (23)

Each factor in this expression can be calculated analytically using

eiv·S = I cos(
v

2
) +

2iv · S

v
sin(

v

2
), (24)

where eiv·S describes a rotation of the vector S about the vector v and where v denotes

the norm of v. Here exp(−itH1/2) describes a rotation of spin j about the vector hj =(
hxj (t),0,h

z
j(t)
)
. The analytical solution yields

eitσj ·hj =


 cos

(
thj

2

)
+

ihz
j (t)

hj
sin
(

thj

2

)
ihx

j (t)

hj
sin
(

thj

2

)

ihx
j (t)

hj
sin
(

thj

2

)
cos
(

thj

2

)
− ihz

j (t)

hj
sin
(

thj

2

)

 , (25)

where hj is the norm of the vector hj . Equation (25) shows that the time evolution comes

down to calculating the elements of 2 × 2 matrices and applying these matrices on the

state |Φ〉. This can be done by picking the corresponding pairs (cf. section 3.2) of states

and applying Eq. (25) thereon.

The two-spin time evolution operator given by Eq. (22) can also be decomposed into

products due to the fact that spin operators with different labels commute

exp

(
it

N∑

j,k=1

Jjkσ
z
jσ

z
k

)
=

L∏

j,k=1

exp
(
it(Jjkσ

z
jσ

z
k)
)
. (26)

This expression can also be worked out analytically and yields

eitJjkσ
z
j σ

z
k =




eitJjk 0 0 0

0 e−itJjk 0 0

0 0 e−itJjk 0

0 0 0 eitJjk



. (27)

The time evolution for the two-spin coupling Hamiltonian H2 consists of calculating the

matrix in Eq. (27) and applying the rotation matrices on |Φ〉 by picking the four respective

states (cf. section 3.2). With this method, it is now possible to apply all parts of Ũ2(t) on

|Φ(t)〉 and therefore the time evolution of the wave function can be calculated.

With the two algorithms (Full Diagonalization and Suzuki-Trotter Product-Formula

algorithm) it is now possible to simulate quantum annealing on a classical computer and

to compare the results to the results obtained from the D-Wave Two adiabatic quantum
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computer, which will be discussed in the next chapter.

3.5 Simulation of 2-SAT Problems

For the purpose of understanding 2-SAT problems an 8 spin 2-SAT problem is considered

and the results of the Full Diagonalization and Suzuki-Trotter Product-Formula algorithm

are shown in the following subsection.

3.5.1 2-satisfiability (2-SAT) Problems

The task in the 2-SAT problem is to determine whether a set of binary variables with a set

of constraints (clauses) on pairs of variables (therefore the name 2-SAT) can be chosen

such that all constraints are fulfilled. The problem is known to be of the complexity class

P in contrast to 3-SAT and higher SAT problems that are NP-complete [8, 11].

The 2-SAT problems considered in this work have been obtained by a Monte Carlo

search algorithm that is designed to find the computationally hardest problems sam-

pled from the ensemble of 2-SAT problems with unique satisfying assignments (non-

degenerate ground states) and a clause to spin ratio α = (N + 1)/N where N is the

number of binary variables or spins in the spin 2-SAT problems. This ratio is the smallest

possible ratio for 2-SAT problems that have a unique satisfying assignment. In this work

2-SAT problems with 8, 12, 18 spins will be considered [24].

The computational hardness of the problems is reflected in the very small minimal

energy gaps between the ground state energy and the energy of the first-excited state

during the annealing process of the 2-SAT problem and a high density of states of the first

excited state of the 2-SAT problems. The small minimal gaps make the problems hard to

solve by quantum annealing as described by the Landau-Zener formula Eq. (8). The high

density of states of the first excited state makes a classical search hard as the probability

of getting trapped in a local minimum during the course of simulated annealing increases

linearly with the degeneracy (or density of states) of the first excited state.

This hardness is the key feature of the problems we study as they are hard to solve

by quantum annealing even so the number of spins is still that small that the solution can

be obtained easily by a brute force method. The small number of spins also allows for

calculating the gaps and by that the computational complexity for quantum annealing of

each problem is known.
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3.5.2 Mapping of 2-SAT Problems to the Ising Model

2SAT problems are defined by binary variables xi and clauses on these variables. Here

we consider the following 2-SAT problem with 8 binary variables and 9 clauses [24]

(x6 ∨ x3) ∧ (x5 ∨ ¬x6) ∧ (x8 ∨ ¬x4) ∧ (88 ∨ ¬x7) ∧ (x1 ∨ ¬x3) ∧ (28)

∧(¬x5 ∨ ¬x1) ∧ (x6 ∨ ¬x3) ∧ (¬x8 ∨ x3) ∧ (¬x2 ∨ ¬x5),

where ∧, ∨ and ¬ denote the logical AND, OR and negation, respectively. To give a

better understanding of the problem, the first two conditions (x6 ∨ x3) and (x5 ∨¬x6) are

discussed. The first condition (x6 ∨ x3) is fulfilled if either x6 or x3 is true (has a value

of 1) or both are true. The second clause (x5 ∨ ¬x6) is fulfilled if either x5 is true (has a

value of 1) or x6 is not true (has a value of 0) or if x5 is true and x6 is not true.

In order to be able to use the quantum annealing algorithm to solve this type of prob-

lems, the problems have to be mapped to the Ising model. As mentioned in the first

chapter, an Ising spin can take the values 1 and -1. Therefore it is quite natural to identify

the Ising spins as Boolean or binary variables where 1 stands for true (1) and -1 for false

(0). The mapping is shown in Fig. 2 for the first two clauses (x6 ∨ x3), (x5 ∨ ¬x6) but is

the same for all 9 clauses.

√ √ √
-

x6 1 1 0 0

x3 1 0 1 0

⇒

√ √ √
-

σ6 1 1 -1 -1

σ3 1 -1 1 -1

m=σ6 + σ3 2 0 0 -2

√ √ √
-

x5 1 1 0 0

¬x6 0 1 0 1

⇒

√ √ √
-

σ5 1 1 -1 -1

σ6 -1 1 -1 1

m=σ5 − σ6 2 0 0 -2

Figure 2: Mapping of the 2-SAT clauses to the Ising variables. A negation of a binary

variable adds a minus to the Ising spin.

For one clause, an Ising Hamiltonian can now be constructed with a magnetization m,

so that the solution of the 2-SAT problem is the ground state of this Ising Hamiltonian.

The Hamiltonian with magnetization m = σi + σj is given by

H = m · (m− 2)

= σ2
i + σ2

j + 2σiσj − 2σi − 2σj

= 2σiσj − 2σi − 2σj + const. (29)

Comparison with the classical Hamiltonian given in Eq. (1) allows identification of
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the fields hzi and couplings Jij to be hzi = 2, hzj = 2 and Jij = −2. This procedure can

be repeated for all clauses and gives a set of hzi and Jij . The corresponding Ising spin

Hamiltonian has the solution of the 2-SAT problem as ground state. The mapping to the

Ising model allows to solve the 2-SAT problem with quantum annealing on the D-Wave

Two processor and by quantum annealing simulations on a classical computer.

Results of the Full Diagonalization and Suzuki-Trotter Product-Formula algorithm of

the 8 spin 2-SAT problem defined by Eq. (28) are presented in the next subsection.

3.5.3 Simulation Results

The Full Diagonalization algorithm allows for calculating the energy spectrum of the

system during the annealing run. Figures 3 and 4 show the energy spectrum of the 8 spin

2-SAT problem given in Eq. (28) during the annealing run from λ = 0 to λ = 1 and

show that the ground state is unique. From the spectrum it can be seen that during the

annealing run there is a critical λcrit at which the energy gap between the ground state

and the first excited state becomes very small. The minimum gap ∆ for this particular

problem is 0.3973. The gaps of all 8 spin problems can be obtained by this method. For

larger problems (in this work 12 and 18 spin problems) different algorithms can be used

to obtain the gaps, as for example the Lanczos algorithm.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

λ

E

Figure 3: Full energy spectrum of the 256 states of the 8 spin 2-SAT problem defined by

Eq. (28) as a function of the annealing parameter λ.

17



0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

λ

E

 

 

∆ 

Figure 4: Spectrum of the lowest lying energy states for the same problem as used for

Fig. 3. The ground state (blue) is unique and the minimum gap between the ground state

and the first excited state (green) is indicated by ∆.

The probability, that the simulated spin system is in the ground state, is given by the

overlap of the ground state wave function ΦGS(τ) at the end of the annealing sweep and

the exact ground state ψGS, 〈ΦGS(τ)|ψGS〉. According to Eq. (8) the probability for an

adiabatic evolution (successful annealing run) is proportional to P ∝ 1 − e−τ . Figure 5

shows the overlap 〈ΦGS(τ)|ψGS〉 for various annealing times τ obtained by the Suzuki-

Trotter algorithm. The figure shows that with longer annealing times the probability for

finding the exact ground state increases and converges to 1. This fact also translates into

a decreasing residual energy per spin, which is defined by

ǫres =
Esys − EGS

N
, (30)

with the energy of the ground stateEGS and the energy of the systemEsys = 〈Φ(τ)|H|Φ(τ)〉
at the end of the annealing run. As the probability for the system being in the ground state

increases with the annealing time τ , the residual energy decreases and converges to 0, as

the energy of the system approaches the ground state energy with longer annealing times

(see Fig. 6).

Further the Landau-Zener Formula Eq. (8), shows that the probability of finding the

ground state (adiabatic evolution) is proportional to P ∝ 1 − e−∆2

. Therefore problems

with larger gaps ∆ should have a higher probability to be solved than problems with

smaller gaps. All gaps of the 8-spin 2-SAT problems can be computed. Therefore it is

possible to show the scaling behavior of P with the gap ∆ as shown in Fig. 7 for an

annealing time τ = 10. The figure indeed shows that with larger gaps the probability for
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finding the solution increases.

τ 

0 10 20 30 40 50 60 70 80 90 100

〈Φ
G

S
(τ

)|
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G
S
〉
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0.4

0.6
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Figure 5: Overlap〈ΦGS(τ)|ψGS〉 of the ground state wave function ΦGS(τ) at the end of

annealing sweep with the exact ground state ψGS for various annealing times τ .
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Figure 6: The residual energy ǫres per spin as a function of the annealing time τ .
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Figure 7: The probability P for the system being in the ground state as a function of the

gap ∆ is shown for an annealing time τ = 10.

Finally the two algorithms are compared to ensure that the Suzuki-Trotter algorithm

has been implemented correctly. Figure 8 shows the overlap during the annealing sweep

of the exact ground state ψGS of the Hamiltonian with the ground state wave function

ΦGS(λ) for different time steps ∆t. Figure 8a shows the overlap for a time step ∆t = 1.

The results obtained by the Full Diagonalization and Suzuki-Trotter algorithms differ

very much, indicating that the time step ∆t = 1 is too big to provide an exact solution.

Figure 8b shows the overlap for a time step ∆t = 0.1. The solutions are now close to

being identical, but some smaller difference can still be seen. In Fig. 8c a time step of

∆t = 0.01 is chosen. For this time step value the solutions are identical up to very small,

nearly unnoticeable differences.

The choice of the time step not only has an influence on the exactness of the Suzuki-

Trotter algorithm, it defines also the time interval in which the Hamiltonian H(t) is as-

sumed to be constant. Therefore it is expected that choosing a too large time step also

introduces errors in the results obtained with the Full Diagonalization algorithm because

of the time discretization. This property is illustrated in Fig. 9, which shows that the

solution for a time step ∆t = 1 differs strongly from the solutions for ∆t = 0.1 and

∆t = 0.01. Since the solutions for ∆t = 0.1 and ∆t = 0.01 are very similar, the choice

of ∆t = 0.1 is considered to be sufficient for simulating the 2-SAT 8 spin problems.
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λ

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

〈Φ
G

S
(λ

)|
ψ

G
S
〉

0

0.1

0.2

0.3

0.4

0.5

(b) ∆t = 0.1
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(c) ∆t = 0.01

Figure 8: Comparison of the Suzuki-Trotter Product Formula algorithm results (blue

curve) to the Full Diagonalization algorithm results (red curve) for the overlap of the

exact ground state with the ground state wave function 〈ΦGS(λ)|ψGS〉 as a function of the

annealing parameter λ for different time steps ∆t.
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Figure 9: Comparison of the overlap 〈ΦGS(λ)|ψGS〉 obtained with the Full Diagonalization

algorithm for various time steps ∆t.
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4 Quantum Annealing and the D-Wave Two Processor

In this chapter the implementation of the transverse Ising spin system on the D-Wave

Two Vesuvius V7 processor is presented. The D-Wave Two processor implements the

quantum annealing Hamiltonian defined by Eq. (4) by using superconducting flux qubits

(rf SQUID qubits). The processor is designed to hold 512 qubits, for which the couplings

Jij and external fields hzi can be chosen. The processor performs quantum annealing

sweeps to find the ground state for a given set of Jij and hzi . The choice of the couplings

Jij is hereby restricted to the topology of the Chimera graph (Fig. 13 ) implemented on

the processor chip.

4.1 Superconducting Flux Qubits

A schematic view of two coupled superconducting flux qubits (rf SQUID qubits) is shown

in Fig. 10. In the following the basic principals of a rf SQUID is presented. A rf SQUID is

a superconducting loop, that corresponds to an ordinaryLC-resonator, forming a quantum

harmonic oscillator [5, 25, 26]. The charge Q at the capacitor and the magnetic flux

Φqj at the inductance obey the commutation relation [Φqj,Qj] = i~. As Φqj and Q are

canonically conjugated variables the Hamiltonian of the harmonic oscillator reads

HLC =
Φ2

qj

2L
+
Q2

2C
. (31)

where L is the inductance and C the capacitance of the LC-resonator. In order to get

an anharmonic oscillator the superconducting loop is interrupted by a dc SQUID, which

is a smaller superconducting loop (see Fig. 10) with thin insulating layers in between

two sections of the loop (marked in blue in Fig. 10). The tunneling charge across the

Josephson junctions adds a cosine term to the potential energy term Φ2
qj/2L in HLC [5,

26]. The Hamiltonian for the anharmonic oscillator then becomes

Hrf =
Q2

2C
+ U2

(
ϕ2
qj

2L
− β cos(ϕqj)

)
,

ϕq,j = U2πΦqj/Φ0 , U =
Φ0

2π
, (32)

and β = 2πLIc/Φ0. Hence Ic denotes the critical current on the Josephson junctions

and Φ0 the flux quantum. In order to control the constructed qubit two external fluxes

Φx
qj and Φx

ccjj are applied. The flux Φx
qj threads through the main superconducting loop.

The flux Φx
ccjj threads through the dc-SQUID allowing to tune the critical current Ic and

therefore control β. If the device is constructed such that β > 1 and the flux bias is tuned

to ϕ1x = 2πΦx
qj/Φ0 ≈ π, then the potential energy becomes bistable (forms a double
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well potential, see Fig. 11). The potential barrier δU can be controlled by increasing

β via ϕx
ccjj = 2πΦx

ccjj/Φ0 (ϕx
ccjj controls δU in Fig. 11). With increasing β two local

minima form in the potential, through which the two lowest lying states of the device may

couple via quantum tunneling. Changing ϕx
qj around the value π allows to bias the flux

ϕqj (therefore ϕx
qj controls 2h in Fig. 11). The two lowest energy states then form the

basis for the qubit, which allow to write an effective low energy Hamiltonian for the qubit

Hqubit = −1

2
ǫσz +∆σx, (33)

where σx and σz denote the Pauli matrices and ǫ and ∆ are the magnetic fluxes produced

by the persistent currents in the superconducting loop. The currents, which are flowing

in opposite directions can now be treated as Ising spins. The restriction to the two lowest

energy states is a valid approximation as the operating temperature of the D-Wave Two

processor is about 17 mK [26].

The interaction between the qubits on the processor is also controlled with an external

magnetic flux Φx
co,ij that is provided to every qubit-to-qubit coupler by a programmable

digital to analog converter (DAC).

The flux qubits discussed above as well as the couplers are macroscopic supercon-

ducting loops, that can be stretched and routed up to a certain degree, as needed to design

the processor. Based on this feature the unit cells holding 8 qubits are realized on the

D-Wave Two processor (see Fig. 12). Figure 12 shows that in the unit cell 4 qubits run

horizontally through the cell and 4 qubits vertically. All 4 horizontal qubits intersect with

all 4 vertical qubits. At the intersections the qubits are coupled to each other. There-

fore, the horizontal qubits are only coupled to the vertical qubits and vice versa. Each

horizontal qubit is coupled to the corresponding horizontal qubits in the neighboring unit

cells above and below and each vertical qubit is coupled to the corresponding vertical

qubit in the neighboring left and right unit cells. This design leads to the topology of the

implemented graph, called Chimera graph, depicted in Fig.13. The figure shows that the

Chimera graph is a non-planar bipartite graph [25, 27].

The qubits in the first unit cell (see Fig. 13) are labeled by i = 1...8 with the labels for

the qubits in the first column being i = 1...4 and the qubits of the second column being

i = 5...8. For the second unit cell along the first row of unit cells in Fig. 13 the index i

runs from 9 to 16. At the end of the row the next unit cell is the first cell in the second

row and so on [25].
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Figure 10: Schematic representation of two coupled superconducting flux qubits qi and qj ,
with Φqi and Φqj threading through the body of the qubits, which are externally controlled

by Φx
cc,jj , Φ

x
qi and Φx

qi. The inductive coupling of the qubits is controlled by the external

flux Φx
co,ij . From: Lanting et al. [27].

Figure 11: Diagram of the double well potential for the two lowest energy levels (| ↑〉 and

| ↓〉) of a flux qubit. The barrier height δU and the bias 2h is controlled by external fields.

From: Johnson et al. [28].
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Figure 12: Picture of the D-Wave Two processor with 64 unit cells comprising 8 qubits

per cell and a single unit cell of the processor. The qubits in the unit cells only interact at

the intersections. From: Lanting et al. [27].

Figure 13: Representation of the topology of the Chimera graph implemented on a D-

Wave processor with 16 unit cells. The dots represent the qubits and the lines the possible

interactions. From: Katzgraber et al. [29].

4.2 Inoperable Qubits, Calibration Errors and Programming Noise

During the implementation of the flux qubits on the D-Wave Two processor errors can

occur for a number of reasons. First, the implemented rf SQUIDS, DACs and the couplers

are all electrical components that are subject to failure. Depending on what component is

broken, this can lead to inoperable qubits and couplers. As a consequence the graph of

the actual processor, on which the simulations were performed does not look as regular

as depicted in Fig. 13 but looks like the one presented in Fig. 14. In this work two

processors are used namely System 6 and System 13. The graph in Fig. 14 shows the
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graph for System 6 and the graph for System 13 is shown in the Appendix A.

Second, the calibration of such a processor comprising 512 qubits is a very complex

task. Therefore a variation of ∼5% of the programmed Jij and hzi is common. These

calibration errors can cause the ground states of the programmed model to differ from the

actual ground state of the processor. Besides these calibration errors that are systematic

errors (will be the same for every annealing run) there are also statistical errors caused by

magnetic flux noise and thermal noise [30, 31].

Figure 14: Schematic picture of the graph implemented on the D-Wave Two processor

(System 6) that was used in the work. Gray (White) spots indicate (in)operable qubits.

Lines indicate qubit-qubit interactions.
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4.3 Programming the D-Wave Two Processor

For the user the programming of the D-Wave Two processor is simple. The problems, that

can be put on the processor must fit the Chimera graph. If this is the case the problem

set of fields hzi and couplings Jij can be sent to the processor via a Matlab interface.

The fields hzi are given as a vector hD(i) of length 512. Hereby the vector hD(i) stores

the external fields applied to σz
i . The Jij couplings between σz

i and σz
j are stored in a

512 × 512 adjacency matrix JD. The machine returns an error, if an inoperable qubit

is coupled or a non-existing coupling between two Ising spins is chosen, as well as if an

external field is applied to an inoperable qubit. The programming on the processor itself

is done by 6 DACs per qubit and one DAC per coupling. An example Matlab code is

shown in Appendix B.

4.4 Quantum Annealing

As described above the flux qubits on the D-Wave Two processor implement an Ising

spin model that can be controlled by programming the DACs controlling the qubits. The

Hamiltonian for the Ising spin system on the D-Wave Two processor is given by

H(t) = B(t)

(
−

N∑

i

hziσ
z
i +

N∑

i,j

Jz
ijσ

z
i σ

z
j

)
− A(t)

N∑

i

σx
i , (34)

which can be identified to be the same as Eq. (4) except for the fact that the energy scales

A(t) and B(t) may not evolve linearly as λ(t) in Eq (4) (see Fig. 15). The annealing

parameter λ(t) = t/τ , where τ is the total annealing time, can be related to the external

fields Φx
cc,kk threading through the Josephson junction by the formula [27]

λ(t) =

(
Φx

cc,kk(t)− Φx
cc,kk,initial

)
(
Φx

cc,kk,final − Φx
cc,kk,initial

) . (35)

The energy scale is hereby set for the Hamiltonian given by Eq. (34) by the macroscopic

quantities of the superconducting qubits. A typical course of the annealing schedule for

the D-Wave Two is shown in Fig. 15. The operating temperature of 17mK is depicted as a

black dashed line in the figure. The energy scales areB(τ) = 22 GHz andA(0) = 34 GHz

with an default annealing time of 20µs [16, 31].
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Figure 15: Diagram of a typical annealing schedule for the two energy scales A(t) and

B(t) on the D-Wave Two. The operating temperature T=17 mK is visualized with a black

dashed line. From: Albash et al. [16].
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5 Solving Random Spanning Trees on the D-Wave Two

In this chapter the qubit (spin) configurations obtained by the D-Wave Two processor for

randomly generated spanning tree problems are presented.

5.1 Randomly Generated Spanning Trees

In general, a spanning tree of an undirected graph G with n vertices is a subgraph of G,

that includes all vertices of G without any cycles. Therefore the tree is always a minimal

set of edges that connects all vertices, i. e. the tree has n− 1 edges. We consider trees on

the graph, or on a part of the graph, shown in Fig. 14.

The trees are generated by an algorithm that is based on a random walk on the graph

G. A random starting point (vertex) of the graph is chosen at the beginning. From there

the algorithm performs a random walk on the graph (along the edges) until all vertices are

visited at least one time. Every time a vertex is visited for the first time the edge by which

it was entered is added to a list of edges. At the end of the random walk the list holds n−1

edges that form the spanning tree. It was shown that the trees randomly generated by the

algorithm are uniformly distributed in the ensemble of spanning trees of an undirected

graph G [32].

The edges obtained from the algorithm for generating a spanning tree are taken to be

the couplings Jij for the problems that are solved on the D-Wave Two processor. The

couplings Jij are all chosen to be (anti-) ferromagnetic with value 1 (-1). The fields

hi are all chosen to be 0. Since a spanning tree is a one dimensional object (it has no

loops and therefore no frustration) choosing antiferromagnetic couplings or ferromagnetic

couplings results in the same problem (with hi = 0) since the problems are invariant under

a Z2-gauge. This of course only holds, if the spin system has a Z2-symmetry. The ground

state energy of a (anti-) ferromagnetic spanning tree is minus the number of edges n − 1

times |Jij|. As Jij is chosen to be 1 (ferromagnetic) or -1 (antiferromagnetic) the ground

state energy is thus −(n− 1).

The nice feature of the spanning tree problems is that the solution is known. For the

ferromagnetic case the ground state is the state with all spins up or all spins down. For the

antiferromagnetic case the solution is given by the state with spins alternately pointing up

and down along the tree. This makes it easy to check whether the D-Wave Two processor

is able to find the solution and to identify in which region of the processor problems arise

if it does not find the solution. But even so the solution is known for all the problems, it

might still be hard to solve the problem with quantum annealing.
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5.2 Results

5.2.1 Z2−Symmetry

As a first test, a ferromagnetic spanning tree is put on the entire D-Wave Two processor.

On the used chip (System 6) 476 qubits of the 512 qubits are operable which means

that the ground state energy of the problem is -475. The processor performs by default

1000 annealing runs for one solving request, i.e. the processor returns 1000 solutions for

every problem submitted. We submit 1000 of such requests giving a total of one million

solutions. The percentage of correct solutions found in these thousands annealing runs

yields information about the complexity of the problem. As mentioned above, there are

two solutions to the ferromagnetic spanning tree problem, as the ground state is two fold

degenerate with the two ground states having all spins up and all spins down, respectively.

If the chip implements an Ising spin system perfectly the probability of finding one ground

state is as high as finding the other one, as the system is Z2-symmetric. This means that

the average magnetization of all spins should be zero (mσi
=
∑1000

k=1 σ
z
k and msys =

∑N
i=1mσi

). This test is performed for various randomly generated spanning trees. In the

following results for one particular ferromagnetic tree are discussed but the results for

other trees are similar.

For the particular ferromagnetic tree the D-Wave Two processor found 237 times a

ground state with EGS = −475. This gives a relative frequency of finding the ground

state of about 0.2h. First excited states with energy E1 = −473 were found 159387

times (15,9%) and the second excited states with energy E2 = −471 were found the

most, namely 362632 times (36,3%). In Fig. 16 the relative occurrence frequency of the

different energies for all obtained states is shown. Important to note is that all 237 times

the D-Wave Two found a ground state it was the ground state with all spins up.
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Figure 16: Relative occurrence frequencies of the solutions with different energies in

percent for a ferromagnetic random spanning tree generated on the entire system. The

ground state energy is -475 and has an relative occurrence frequency of 0.2h.

In order to better understand why the processor faces such difficulties of finding the

correct solution the average single spin magnetization is considered. The obtained average

magnetizations for the single spins (qubits) are shown in Fig. 17 with the qubits numbered

from 1 to 512. For the inoperable qubits the magnetization is set to 0. The figure shows

that the processor is inhomogeneous as it exhibits two different areas. In one region the

spins have a tendency to point down and in a second region the spins tend to point up.

The region in which the spins tend to point up is located in the lower part of the processor

(qubit numbers larger than 250). The region in which the spins tend to point down is

located mainly in the upper right part of the processor. In these two regions a bias-field

appears to be acting, so that the spins are forced to point up/down even so it might not

be favorable according to the Hamiltonian. As the bias-fields are in opposite directions

in the two regions of the processor it is favorable for the spin system on the processor to

”break” a ferromagnetic coupling (an antiparallel alignment) between two spins, so that

the spins in the respective regions can point in the direction of the bias-field.

This observation gives an explanation for the fact that the ground state is rarely found,

as the two regions compete against each other and therefore favor an antiparallel align-

ment between two coupled qubits, which finally leads to an excited state. In Fig. 18 the

relative frequency of the qubits to have an antiparallel alignment to a coupled qubit is

shown in order to detect ”broken” couplings on the processor. The figure demonstrates

that the antiparallel alignment mainly occurs (77%) at one and the same qubit namely

the one with number 15. In the considered tree qubit 15 is connected to qubits 10 and

23, which have a relative frequency of an antiparallel aligned coupled qubit of 55% and

32%, respectively. In total only six qubits have such a relative frequency higher than 15%.
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This shows that the ”breaking” of a ferromagnetic coupling mainly takes place between

six qubits. This feature was observed for all different spanning tree problems submitted

to the processor, however the qubits involved in the ”breaking” were different but in the

same area. We also tried to put a bias field hi on the couplings involved in the ”breaking”

in order to force the qubits to be aligned, but this moved the ”breaking” along the chain

to the next qubit.

From this it can be concluded that the bias-fields in the two regions are so strong that

a ”breaking” of a ferromagnetic coupling between qubits nearly always occurs and that it

is not an error of single qubits. Further to note is that the bias-field at the bottom part of

the processor is stronger than the one at the upper part. This can be concluded from the

fact that the 237 ground states found by the D-Wave Two were the ground states with all

spins up.
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Figure 17: Average single spin magnetization for a ferromagnetic spanning tree of all

working 476 qubits. The processor has two regions where spins are biased to point up or

down, respectively and the Z2−symmetry is broken.
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Figure 18: Relative frequency of an antiparallel alignment between coupled qubits in a

ferromagnetic spanning tree with 476 qubits. Most of the antiparallel alignment occurs

between 6 qubits.

To further illustrate this fact a field bias h452 = −1 is applied to qubit 452, which

is the qubit at the bottom left corner of the processor. This in theory should break the

Z2−symmetry and make all spins in the spanning tree to point down (thereby lifting the

ground state degeneracy). The ground state energy is EGS = −476. The lowest energy

states found by the processor are second excited states which have the energyE2 = −472.

Two of the lowest energy states found by the processor are shown in Fig. 19. In Fig. 18a

it can be seen that instead of flipping all the spins in the bottom left side of the processor

(and also on the entire chip) the field h452 = −1 is ignored and the spins still point up

(blue). In the second state depicted, the field bias h452 = −1 locally flips some spins (42

spins) but the spin flipping does not extend over the entire bottom region. This also shows

that the regions have strong bias-fields and that therefore the Z2−symmetry is broken

severely.
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(a) (b)

Figure 19: Two lowest energy solutions (E2 = −472) found by the D-Wave Two proces-

sor for a random spanning tree that has a field bias h452 = −1 applied to qubits 452. In

(a) the applied field bias is ignored in favor of the regional bias-field as spin 452 aligns

antiparallel to the direction of the applied field bias. In (b) some spins are flipped locally

but the overall bias-field of the region is too strong to flip the spins in the entire bottom

part of the processor.

5.2.2 Statistical Independence of Uncoupled Regions

In this subsection the processor is divided into four regions (top-left, top-right, bottom-

left, bottom-right) with the same number of unit cells. The same spanning tree is put

onto the four regions. This is done for ferromagnetic as well as for antiferromagnetic

spanning trees. As the results are similar, the ferromagnetic spanning tree is discussed in

the following. Inoperable qubits in one region must also not be used in the other regions

in order to be able to put the same spanning tree on all four regions. This reduces the

number of used qubits per region to 99. Hundred spanning trees are considered and for

each spanning tree 1000 solution requests are processed yielding one million solutions
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per tree.

The first idea is to test whether regions with more inoperable qubits operate in a similar

way as the regions with less inoperable qubits. If a different way of operation would be

observed, then this would mean that there is a difference between unused and inoperable

qubits and that there is a difference in the way they influence the entire system. Tests in

this direction did however not show any significant differences.

Another interesting question is, whether the presence of unused couplers and qubits

influence the neighboring used qubits and couplers. To answer this question one has to

test whether switched off qubits and couplers are actually off i.e. do not influence the

results. This was tested by checking whether the frequencies of finding the solution in

the different regions are statistically independent from each other. All four regions have

a relative frequency Pi of finding the solution to the spanning tree (i = 1, 2, 3, 4). If

the four regions are statistically independent, then the relative frequency for finding the

solution in region i and region j (i 6= j) at the same time is given by Pij = Pi · Pj .

For finding solutions in three regions at the same time the relative frequency is given by

Pijk = Pi · Pj · Pk (i 6= j 6= k) and for four regions by P1234 = P1 · P2 · P3 · P4.

Figure 20 shows the relative frequency of finding the solution in the regions Pi (yellow

bars labeled 1 to 4) on the D-Wave Two processor. The relative frequency of finding

solutions in different regions at the same time is represented by the yellow bars that are

labeled with Pij for finding the solution in region i and j at the same time, Pijk for

finding the solution in regions i, j, and k at the same time and P1234 for finding the

solution in all four regions at the same time. The red bars plotted over the yellow bars

in Fig. 20 represent the frequencies calculated from the single region relative frequencies

Pi. From Fig. 20 it can be seen that the calculated relative frequencies of finding solutions

at the same time in different regions are the same as the frequencies obtained on the D-

Wave Two processor taken into account the statistical errors (error bars indicate one σ

deviation). The relative frequencies are also listed in Table 1. The results suggest that the

regions can be treated as statistically independent, as they appear not to influence each

other.
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Figure 20: Relative frequencies of finding the solution to a random spanning tree problem

in four disconnected regions (yellow bars labeled by P1 to P4). The relative frequency of

finding solutions in different regions at the same time (yellow bars labeled by Pij , Pijk,

P1234) is given by the product of the frequencies in the single regions (red bars), if the

regions are statistically independent. As the yellow and red bars overlay (taking statistical

errors into account), the four regions can be considered to be independent.

Calculated [%] D-Wave [%]

P1234 17.2± 0.9 18.9± 1.1
P123 21.5± 1.1 23.0± 1.3
P124 23.5± 1.2 24.8± 1.3
P134 37.0± 1.3 38.9± 1.6
P234 27.3± 1.1 28.1± 1.1
P12 29.3± 1.4 30.3± 1.6
P13 46.2± 1.6 47.6± 1.8
P14 50.4± 1.7 51.2± 1.8
P23 34.1± 1.3 34.5± 1.3
P24 37.2± 1.4 37.7± 1.4
P34 58.6± 1.0 59.1± 1.1
P1 - 63.0± 2.1
P2 - 46.5± 1.7
P3 - 73.3± 1.0
P4 - 80.0± 0.8

Table 1: Relative frequencies of finding the solution to a random spanning tree problem

in four disconnected regions and the relative frequency of finding solutions in different

regions at the same time.
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5.2.3 Date/Time Dependency

In this section the right half of the processor was divided into two regions with each using

93 operable qubits. Note that this chip is a different one (System 13) as the one used

before was taken offline (a graph of the chip is shown in the appendix). Again identical

spanning trees are put on the two regions. The spanning trees are antiferromagnetic trees.

This was also originally done to test for the influence of inoperable qubits, which did

not yield conclusive results as much more data would be needed in order to get enough

statistics to draw a clear conclusion. 30 different spanning trees are put on the processor

again with 1000 solution requests yielding one million solutions per tree. The key point

of the observations made is that the first ten trees were submitted on January 15, 2015 and

the other 20 trees on January 20, 2015. The average relative frequencies of finding the

solution in the single regions and in both regions at the same time at the different days are

listed in Table 2. The relative frequencies obtained on January 15 differ strongly from the

frequencies obtained at January 20. The relative frequencies for finding the solution in

each region independently are more than 30% lower on January 15 as on January 20 with

a statistical error less than 0.3%. For finding the solutions in both regions at the same

time the relative frequency difference is nearly 50%. In Fig. 21 the relative frequency

for finding a solution for all 30 spanning tree problems for the two regions is shown. A

large increase in the relative frequency for finding the solution can be seen for the random

spanning tree problems submitted on January 20.

This result shows that the D-Wave Two performs different from day to day. This

might be caused by different operating temperatures at specific days or by magnetic flux

fluctuations in the system. This suggests that in order to obtain statistical stable results it

is necessary to submit problems on different days over a longer time period.

15.1.2015 20.1.2015

Finding both solutions [%] 36.57± 0.15 85.54± 0.06
Solution for Region 1 [%] 62.32± 0.19 92.45± 0.02
Solution for Region 2 [%] 59.10± 0.23 92.35± 0.03

Table 2: Relative solving frequency for antiferromagnetic random spanning tree problems

on two different days for two regions on the chip.
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Figure 21: Relative solving frequencies for antiferromagnetic random spanning tree prob-

lems in two regions of the processor as a function of the problem number . The first ten

problems (on the left of the dashed line) were submitted on January 15, 2015 and the other

20 (on the right of the dashed line) on January 20, 2015. A strong increase in the relative

solving frequency is observed for the spanning tree problems submitted on January 20.
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6 Solving 2-SAT Problems on the D-Wave Two Processor

In this chapter 2-SAT problems are studied on the D-Wave Two processor and the results

are compared to the results obtained with the Suzuki-Trotter Product Formula algorithm

for simulating the quantum annealing process.

6.1 Embedding 2-SAT Problems on the Chimera Graph

The 2-SAT problems introduced in section 3.5 are solved on the D-Wave Two processor

(System 13). As mentioned in section 3.5, the 2-SAT problems considered in this work

have been obtained by a Monte Carlo search algorithm, designed to find the computation-

ally hardest problems. The problems have a unique satisfying assignment (non-degenerate

ground state) and a clause to spin ratio α = (N + 1)/N . The 2-SAT problems are 8, 12,

18 spin problems. There are a total of 100 8-spin problems and 1000 12- and 18-spin

problems, respectively [24].

They can be mapped to the Ising model as shown in subsection 3.5.2. The problems

are embedded directly on the processor (no logical qubits). This means that only the

problems that are subgraphs of the Chimera graph fit on the processor. The search for

a mapping of the problems onto the Chimera topology was done computationally by a

kind of sophisticated random walk. This reduces the number of problems drastically. The

algorithm mapped 65 8-spin problems, 334 12-spin problems and 262 18-spin problems

on the Chimera graph. Note that a better algorithm possibly can map more problems on

the graph.

As mentioned before, the problems are computationally the hardest of the 2-SAT prob-

lems because of their small minimal gaps ∆ during the annealing sweep at λcrit and their

high degeneracy of the first excited state Ω1. Another key feature of the problems is that

the correlation between the gaps ∆ and the degeneracy Ω1 of the first excited state are

nearly completely uncorrelated as they have a correlation coefficient of 0.12. Figure 22

shows the degeneracy Ω1 plotted against 1/∆ for the full set of 18-spin problems. The

red markers indicate the problems that were studied on the D-Wave Two.

Since the problems have known minimum gaps ∆, it is expected that the scaling of

the solution frequency with the gap corresponds to the scaling properties of the quantum

annealing process simulated with the Suzuki-Trotter Product Formula algorithm.
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Figure 22: Inverse gap 1/∆ as a function of the degeneracy Ω1 of the first excited state

for all 18 spin problems. The red markers indicate the problems that could be mapped on

the graph of the D-Wave Two processor.

6.2 Parameters for Simulating the Quantum Annealing Process

In order to simulate the behavior of the D-Wave Two processor, the energy scales and the

run time need to be chosen accordingly. The energy scales on the D-Wave Two processor

are BDW (τ) = 22 GHz and ADW (0) = 34 GHz (see Fig. 15) with an annealing time

of τDW = 20 µs. In the simulation As(0) is set to one which leads to Bs(τ) = 22/34.

In this scale the annealing time of 20 µs of the D-Wave Two processor corresponds to

τsim = 1000 in the simulation (τDWADW (0) ≡ τsimAs(0)) . The operating temperature is

TDW = 17mK. For the simulation this corresponds to Ts = 0.058.

6.3 Results for Solving the 2-SAT Problems

In this section simulation results for the 2-SAT problems are compared to the results

obtained with the D-Wave Two processor. The simulations on the D-Wave Two were

performed in three different regions of the processor. Since the results of the three regions

are similar only the results of the first region are presented in the following. Further, in

order to average out the effects of a possible bias-field in the region (see section 5), all

problems are also run with flipped fields hzi = −hzi and the results are averaged over

both field directions. The data for each specific problem is collected over several different

days. This accounts for the possibility of obtaining different results witnessed on different

days (see section 5).

As the set of problems is limited, the problem Hamiltonians are rescaledH
′

cl = a ·Hcl,

in order to generate more problems with different gaps. The 18-spin problems are rescaled
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with a = 0.425 and a = 0.425/2. The 12-spin problems are rescaled with a = 0.425 and

the 8-spin problems with a = 0.1, 0.2, 0.4, 0.6, 0.8. The rescaling leads to smaller gaps

(harder problems) and also slightly shifts the critical point λcrit, at which the minimal gap

∆ occurs during the annealing process.

All results from the D-Wave Two and the spin simulations are shown in Fig. 23, which

depicts the frequency P for finding the solution as a function of the gap ∆. Spin simula-

tion results for 12-spin problems rescaled with a = 0.2 and 18-spin problems are included

in the plot, as they extend to the left bottom corner of the plot in the line formed by the

brown and violet markers. The operating temperature is indicated by the black vertical

line at ∆ = 0.58. The figure shows that the frequency obtained by the D-Wave Two pro-

cessor for the 8-spin and the non-rescaled 12-spin problem sets, lie in the same range as

the frequencies obtained by the spin simulation. But for the 18-spin problem sets and the

rescaled 12-spin problem set (a = 0,425) this is not the case. This is now studied in more

detail.
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Figure 23: Frequency P for finding the solution of 2-SAT problems with the D-Wave Two

Processor and by simulated quantum annealing. The operating temperature is indicated

by the black vertical line at ∆ = 0.58. Results for 18-spin problems are indicated with

yellow (a = 0.425/2), pink (a = 0.425) and light blue (a = 1) markers. Results for 12-

spin problems are indicated with green (a = 0.425) and blue (a = 1) markers and 8-spin

problems (a = 0.1, 0.2, 0.4, 0.6, 0.8) with red markers. Simulation results for 12-spin

problems (a = 0.2) are incdicated with violet markers and simulation results for 18-spin

problems (a = 1) with brown markers.

In Fig. 24 the results of the 12-spin problems are omitted. When comparing the

simulated quantum annealing results and the D-Wave results for the 18-spin problems

it becomes apparent that the frequencies of finding a solution on the D-Wave Two pro-

cessor are significantly higher than expected from the simulations. The rescaling of the

42



18-spin problems, which was originally intended to create harder problems as the gap

gets smaller, seems to help the D-Wave processor to find the solutions to the problems.

The non-rescaled problems (light blue markers) have lower frequencies as the problems

rescaled by a = 0.425 and the problems rescaled by a = 0.425/2 have an even higher

solving frequency. This result is unexpected as rescaling makes the gaps smaller and

therefore harder to solve by quantum annealing. This indicates that a process, which

is not of quantum nature, is helping the D-Wave processor to find the solutions for the

18-spin problems. A reasonable assumption might be, that thermal fluctuations help the

processor to find the solutions and that rescaling the problems makes the barriers, that

are to overcome thermally, smaller. This assumption also makes sense with respect to the

operating temperature of the processor. The energy scale of thermal fluctuation is larger

than the gaps of the 18-spin problems.

In Fig. 24 the results for the 8-spin (rescaled and non rescaled) problems are also

shown (red markers). The gaps are large compared to the ones of the 18-spin problems.

Most of the gaps are larger than the operating temperature and only some are smaller.

The D-Wave results (red markers) match the simulation results (violet markers). This

indicates that in the area around the operating temperature the dominating process for

solving 8-spin problems is quantum annealing. From this it can be assumed that for

2-SAT problems with minimum gaps larger than the operating temperature quantum an-

nealing is the dominating process. Around the operating temperature must be a transition

area where the quantum annealing process gets dominated by another process, probably

thermal fluctuations, but which does not seem to influence the 8-spin problems.
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Figure 24: Same as Fig. 23 but the results of the 12-spin problems have been omitted.

This transition area around the operating temperature can be studied further by focus-

ing on the solution frequencies as a function of the gap for the 12-spin and the rescaled
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12-spin (a = 0.425) problems as depicted in Fig. 25. The solution frequencies of the

non-rescaled and the rescaled 12-spin problems with a gap larger than the operating tem-

perature have a similar value range. At the operating temperature the frequencies for

the rescaled (green markers) and the non rescaled (blue markers) problems start to ex-

hibit a different behavior. The frequencies of the non-rescaled problems obtained with

the D-Wave Two processor still follow the behavior of frequencies obtained by the spin

simulations but for the rescaled problems the frequencies obtained with the D-Wave Two

processor begin to be higher than the simulated ones. Therefore the transition between

the two regions, the region where quantum annealing is dominating (gaps larger than

the operating temperature) and the region where thermal fluctuations dominate (below

the operating temperature), takes place around the operating temperature. Rescaling for

problems with gaps of the size of the operating temperature already helps the processor

to solve the problems and suggests that the solutions are obtained by a mixture of thermal

fluctuations and quantum annealing. For the non rescaled 12-spin problems however the

quantum annealing process still seems to dominate.
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Figure 25: Same as Fig. 23 but only the 12 Spin problems are depicted.

From the results of the 2-SAT problems it can be assumed that the D-Wave machine

performs quantum annealing for problems with gaps that are larger than the operation

temperature. Problems with much smaller gaps seem to be not solved by quantum an-

nealing and the assumption that thermal fluctuations play a major role can be made. For

gaps around the operating temperature the quantum annealing process seems to dominate

as long as the problems are not rescaled. Rescaling increases the frequency for finding

the solution and is therefore assumed to be at least thermally assisted.

Also the size (number of spins) of the problems seems to play a role in the transition

region. This is indicated by the fact that rescaled 8-spin problems seem to follow the
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simulated quantum annealing behavior, but the rescaled 12-spin problems do not.
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7 Conclusion

This work presents the results of random spanning tree and 2-SAT problems, which were

solved using a D-Wave Two processor.

Firstly, the results for random spanning tree problems, translated to Ising spin prob-

lems are discussed. The results suggest that the Z2-symmetry of the Ising spin system

implemented on the D-Wave Two processor is severely broken. It is furthermore shown,

that isolated regions of qubits on the D-Wave Two processor behave statistically indepen-

dent. A date and time dependency of the solution frequency is observed as the solution

frequency of the same problem on different days differs significantly with respect to the

statistical errors.

When starting to operate on a new D-Wave processor, the random spanning tree prob-

lems presented in this work can be used as good test cases that allow obtaining basic

information on the processor’s characteristics. The results of the random spanning tree

problem also suggest that, in order to get statistically reproducible results, computations

on the D-Wave Two processor need to be performed over long time periods and in differ-

ent regions of the processor.

Secondly, the solving frequencies for 2-SAT problems with very small minimum gaps

solved on the D-Wave Two processor are compared to those obtained via emulation i.e.

simulation of the actual physical behavior of the D-Wave Two quantum processor on a

classical computer. A comparison of the solving frequencies shows, that 2-SAT problems

with minimum gaps larger than the operating temperature of the D-Wave Two processor

are solved by quantum annealing. For problems with minimum gaps significantly smaller

than the operating temperature of the D-Wave Two processor, the results suggest that

finding a solution is assisted by thermal effects. For problems with minimum gaps close to

the operating temperature of the D-Wave Two processor, a transition between the quantum

annealing process and the thermally assisted process can be assumed.

In order to gain a more detailed insight into the behavior of the D-Wave Two proces-

sor, further studies of the 2-SAT problems are planned. An investigation of additional

problems in the area of transition is expected to deliver a better understanding of the pre-

vailing processes. It should also be of interest to investigate at what point a problem with a

smaller minimum gap than the processor’s operating temperature would lead to a decrease

rather than an increase of the solution frequency. A decrease of the solution frequency is

expected since the energy barriers between states are so small that the likelihood of ther-

mal occupation of exited states increases and also that calibration errors of the D-Wave

Two processor become more dominant.
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A Graph of System 13

Figure 26: Schematic picture of the graph implemented on the D-Wave Two processor

(System 13) that was used in the work. Gray (White) spots indicate (in)operable qubits.

Lines indicate qubit-qubit interactions.
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B Matlab Code for Operating on the D-Wave Two

f u n c t i o n [ ]= d a t a c o l l ( )

% D−Wave au t h s t u f f

u r l = ’ h t t p s : / / q u b i s t . dwavesys . com / s a p i / ’ ;

% S e t t o k e n p r o v i d e d by D−Wave

t o k e n = ’ t o k e n ’ ;

% Handle

conn = s a p i R e m o t e C o n n e c t i o n ( u r l , t o k e n ) ;

% Chosing s o l v e r

s o l v e r = s a p i S o l v e r ( conn , ’SYSTEM13 ’ ) ;

% g e t i n g p r o p e r t i e s from s o l v e r

p r o p s = s a p i S o l v e r P r o p e r t i e s ( s o l v e r ) ;

% Load t h e h− f i e l d s

l o a d ( ’ h . mat ’ )

% Load t h e J−c o u p l i n g s

l o a d ( ’ J . mat ’ )

% s e n d i n g t h e s o v l i n g r e q u e s t t o t h e p r o c e s s o r

answer = s a p i S o l v e I s i n g ( s o l v e r , h , J ) ;

% s a v i n g t h e answer t o a c e r t a i n l o c a t i o n

f i l e n a m e = [ ’ / home0 / l . h ob l / Documents / ’ , ’ f i l e n a m e ’ , ’ . mat ’ ] ;

s av e ( f i l e n a m e , ’ answer ’ ) ;

end
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C C++ Code for Simulating the D-Wave Two Processor

main.cpp

# i n c l u d e " s p i n s y s . h "

# i n c l u d e < s t r i n g >

# i n c l u d e < i o s t r e a m >

# i n c l u d e <iomanip >

# i n c l u d e <math . h>

# i n c l u d e < v e c t o r >

# i n c l u d e < f s t r e a m >

# i n c l u d e < s t d i o . h>

# i n c l u d e < s t d l i b . h>

# i n c l u d e < s s t r e a m >

u s i n g namespace s t d ;

i n t main ( ) {

/ / Get s t a r t e t

s t a r t ( ) ;

}

vo id s t a r t ( ) {

/ / t a k e i n p u t argument s t i m e s t e p s and S i z e

i n t N;

i n t t i m e s t e p s ;

i n t s t a r t ;

i n t s t e p s ;

cou t << " I n p u t s t a r t i n g Tau "<<" \ n " ;

c in >> s t a r t ;

cou t << " I n p u t end Tau "<<" \ n " ;

c in >> t i m e s t e p s ;

cou t << " I n p u t Tau s t e p s i z e "<<" \ n " ;

c in >> s t e p s ;

cou t << " I n p u t Sys tem s i z e "<<" \ n " ;

c in >> N;

/ / Ou tpu t t o f i l e

o f s t r e a m f i l e ;

f i l e . p r e c i s i o n ( 1 4 ) ;

f i l e . s e t f ( i o s : : f i x e d ) ;

f i l e . s e t f ( i o s : : showpo in t ) ;

f i l e . open ( " p s i . t x t " , s t d : : o f s t r e a m : : app ) ;

/ / Run t h e program f o r d i f f e r e n t t i m e s t e p s

f o r ( i n t i = s t a r t ; i < t i m e s t e p s ; i = i + s t e p s ) {
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/ / c r e a t e an o b j e c t o f c l a s s s p i n s y s

s p i n s y s t h e S i m u l a t i o n ( i , N ) ;

/ / Run method o f c l a s s s p i n s y s

t h e S i m u l a t i o n . run ( ) ;

/ / G e t t e r f u n c t i o n s f o r e n e r g y and w a v e f u n c t i o n

d o u b l e ∗ p s i = t h e S i m u l a t i o n . g e t p s i ( ) ;

d o u b l e ∗ p s i i = t h e S i m u l a t i o n . g e t p s i i ( ) ;

d o u b l e Energy= t h e S i m u l a t i o n . Energy ( ) ;

/ / o u t p u t t o f i l e

f i l e << Energy << " \ n " ;

}

}

53



spinsys.cpp

# i n c l u d e < s t r i n g >

# i n c l u d e < i o s t r e a m >

# i n c l u d e <iomanip >

# i n c l u d e <math . h>

# i n c l u d e < v e c t o r >

# i n c l u d e < f s t r e a m >

# i n c l u d e < s t d i o . h>

# i n c l u d e < s t d l i b . h>

# i n c l u d e < s s t r e a m >

# i n c l u d e " s p i n s y s . h "

u s i n g namespace s t d ;

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / I n i t i a l i s i e r u n g

vo id s p i n s y s : : v I n i t i a l i s i e r u n g ( i n t T , i n t S i z e ) {

/ / Time f u n c t i o n s

gamma=0;

hz =0;

d e l t a =0 ;

t e s t =0 ;

E=0;

s e c =0;

/ / T i m e s t e p s

t i m e s t e p s =T ;

/ / T i m e s t e p s i z e

t a u = 0 . 0 1 ;

/ / C o u p l i n g s t r e n g t h

J =0;

/ / # o f f s p i n s

N= S i z e ;

/ / # o f s t a t e s

N s t a t e s = ( i n t ) pow ( 2 ,N ) ;

/ / I n i t i a l i s e t h e wave f u n c t i o n

p s i = new d o u b l e [ ( i n t ) pow ( 2 ,N ) ] ;

f o r ( i n t i =0 ; i <pow ( 2 ,N ) ; i ++){

p s i [ i ] = 1 / ( d o u b l e ) pow ( ( d o u b l e ) 2 , ( ( d o u b l e ) N ) / 2 ) ;

}

/ / i n i a l i s e i m a g i n a r y p a r t

p s i i = new d o u b l e [ ( i n t ) pow ( 2 ,N ) ] ;
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f o r ( i n t i =0 ; i <pow ( 2 ,N ) ; i ++){

p s i i [ i ] = 0 ;

}

/ / i n i t i a l i z e r o t a t i o n m a t r i x

Fevo = new d o u b l e ∗ [ 2 ] ;

f o r ( i n t i = 0 ; i < 2 ; i ++) {

Fevo [ i ] = new d o u b l e [ 2 ] ;

f o r ( i n t j = 0 ; j < 2 ; j ++){

Fevo [ i ] [ j ] =0 ;

}

}

/ / i n i t i a l i z e r o t a t i o n m a t r i x

Fevo i = new d o u b l e ∗ [ 2 ] ;

f o r ( i n t i = 0 ; i < 2 ; i ++) {

Fevo i [ i ] = new d o u b le [ 2 ] ;

f o r ( i n t j = 0 ; j < 2 ; j ++){

Fevo i [ i ] [ j ] =0 ;

}

}

/ / i n i t i a l i z e c o u p l i n g m a t r i x

Jevo = new d o u b l e [ 4 ] ;

J e v o i = new d o u b l e [ 4 ] ;

f o r ( i n t i = 0 ; i <4 ; i ++){

Jevo [ i ] =0 ;

J e v o i [ i ] = 0 ;

}

/ / i n i t i a l i z e A d j a z e n m a t r i x

CMatr ix = new d o u b l e ∗ [ 1 6 ] ;

f o r ( i n t i = 0 ; i < 1 6 ; i ++) {

CMatr ix [ i ] = new d o u b le [ 1 6 ] ;

f o r ( i n t j = 0 ; j < 1 6 ; j ++){

CMatr ix [ i ] [ j ] =0 ;

}

}

/ / i n i a l i s e z− f i e l d v e c t o r

h f i e l d = new d o u b l e [ 1 6 ] ;

f o r ( i n t i =0 ; i <16; i ++){

h f i e l d [ i ] = 0 ;

}

/ / read i n A d j a z e n m a t r i x and f i l e d s

readM ( ) ;

readH ( ) ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / FMatr ix t i m e u p d a t e

vo id s p i n s y s : : F M a t r i x u p d a t e ( ) {

55



/ / u p d a t e t h e r o t a t i o n m a t r i x

gamma=1−( d o u b l e ) t / t i m e s t e p s ;

d o u b l e norm = s q r t ( gamma∗gamma+hz∗hz ) ;

i f ( norm ==0){

Fevo [ 0 ] [ 0 ] = cos ( t a u ∗norm / 2 ) ;

Fevo [ 1 ] [ 1 ] = cos ( t a u ∗norm / 2 ) ;

Fevo i [ 0 ] [ 0 ] = 0 ;

Fevo i [ 1 ] [ 1 ] = 0 ;

Fevo i [ 1 ] [ 0 ] = 0 ;

Fevo i [ 0 ] [ 1 ] = 0 ;

}

e l s e {

Fevo [ 0 ] [ 0 ] = cos ( t a u ∗norm / 2 ) ;

Fevo [ 1 ] [ 1 ] = cos ( t a u ∗norm / 2 ) ;

Fevo i [ 0 ] [ 0 ] = hz / norm∗ s i n ( t a u ∗norm / 2 ) ;

Fevo i [ 1 ] [ 1 ] = −hz / norm∗ s i n ( t a u ∗norm / 2 ) ;

Fevo i [ 1 ] [ 0 ] = gamma / norm∗ s i n ( t a u ∗norm / 2 ) ;

Fevo i [ 0 ] [ 1 ] = gamma / norm∗ s i n ( t a u ∗norm / 2 ) ;

}

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / J M a t r i x t i m e u p d a t e

vo id s p i n s y s : : J M a t r i x u p d a t e ( ) {

/ / u p d a t e t h e Coup l ing m a t r i x

d e l t a = ( d o u b l e ) t / t i m e s t e p s ;

Jevo [ 0 ] = cos ( t a u ∗ J ∗ d e l t a / 1 ) ;

Jevo [ 1 ] = cos (− t a u ∗ J ∗ d e l t a / 1 ) ;

Jevo [ 2 ] = cos (− t a u ∗ J ∗ d e l t a / 1 ) ;

Jevo [ 3 ] = cos ( t a u ∗ J ∗ d e l t a / 1 ) ;

J e v o i [ 0 ] = s i n ( t a u ∗ J ∗ d e l t a / 1 ) ;

J e v o i [ 1 ] = s i n (− t a u ∗ J ∗ d e l t a / 1 ) ;

J e v o i [ 2 ] = s i n (− t a u ∗ J ∗ d e l t a / 1 ) ;

J e v o i [ 3 ] = s i n ( t a u ∗ J ∗ d e l t a / 1 ) ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / a p l l y X f i e l d r o t a t i o n

vo id s p i n s y s : : X f i e l d r o t a t i o n ( ) {

/ / d e f i n e l o c a l v a r i a b l e s

d o u b l e R1 =0;

d o u b l e R2 =0;

d o u b l e I1 =0;

d o u b l e I2 =0;

/ / u p d a t e a l l s p i n s t a t e s f o r a l l s p i n s
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f o r ( i n t l =0 ; l <N ; l ++){

/ / c a l c u l a t e e n t r y d i s t a n c e

i n t i 1 = ( i n t ) pow ( 2 , l ) ;

hz= h f i e l d [ l ] ;

/ / u p d a t e t h e t i m e d e p e n d e n t H a m i l t o n i a n s

F M a t r i x u p d a t e ( ) ;

/ / c a l c u l a t e t h e r o t a t i o n around t h e x a x i s ( h_x f i e l d )

f o r ( i n t k=0 ; k< N s t a t e s ; k += 2){

/ / g e t i n d e x

i n t i 2 =k&i 1 ;

i n t i =k−i 2 + i 2 / i 1 ;

i n t j = i + i 1 ;

/ / Get t h e r e a l and i m a g i n a r y p a r t

R1 = p s i [ i ] ;

I1 = p s i i [ i ] ;

/ / Get t h e r e a l and i m a g i n a r y p a r t

R2 = p s i [ j ] ;

I2 = p s i i [ j ] ;

/ / pe r fo rm m a t r i x v e c t o r m u l t i p l i c a t i o n and s t o r e

p s i [ i ] = R1∗Fevo [0 ] [0 ] − I2 ∗ Fevo i [0 ] [1 ] − I1 ∗ Fevo i [ 0 ] [ 0 ] ;

p s i i [ i ] = I1 ∗Fevo [ 0 ] [ 0 ] + R2∗ Fevo i [ 0 ] [ 1 ] + R1∗ Fevo i [ 0 ] [ 0 ] ;

/ / s econd wave f u n c t i o n e n t r y

p s i [ j ] = R2∗Fevo [1 ] [1 ] − I1 ∗ Fevo i [1 ] [0 ] − I2 ∗ Fevo i [ 1 ] [ 1 ] ;

p s i i [ j ] = R1∗ Fevo i [ 1 ] [ 0 ] + I2 ∗Fevo [ 1 ] [ 1 ] + R2∗ Fevo i [ 1 ] [ 1 ] ;

}

}

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / a p l l y Coup l ing s h i f t

vo id s p i n s y s : : C o u p l i n g p h a s e s h i f t ( ) {

/ / d e f i n e l o c a l v a r i a b l e s

d o u b l e R1 =0;

d o u b l e R2 =0;

d o u b l e R3 =0;

d o u b l e R4 =0;

d o u b l e I1 =0;

d o u b l e I2 =0;

d o u b l e I3 =0;

d o u b l e I4 =0;

/ / c a l c u l a t e t h e c o u p l i n g phase s h i f t ( J_z c o u p l i n g )

f o r ( i n t l =0 ; l <N; l ++){

f o r ( i n t m= l ; m<N; m++){
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/ / check i f t h e two s p i n s are c o u p l e s

J=CMatr ix [ l ] [m] ;

i f ( J ! = 0 ) {

/ / u p d a t e m a t r i x

J M a t r i x u p d a t e ( ) ;

i n t n i i = ( i n t ) pow ( 2 , l ) ;

i n t n j j = ( i n t ) pow ( 2 ,m) ;

/ / run t h r o u g h a l l s t a t e s f o r t h e c o u p l i n g

f o r ( i n t k =0; k< N s t a t e s ; k +=4){

/ / g e t t h e i n d e x e s

i n t n3= k & n j j ;

i n t n2=k−n3 +( n3+n3 ) / n j j ;

i n t n1=n2 & n i i ;

i n t n0=n2−n1+n1 / n i i ;

n1=n0+ n i i ;

n2=n0+ n j j ;

n3=n1+ n j j ;

/ / g e t t h e wave f u n c t i o n s e n t r y

R1= p s i [ n0 ] ;

I1 = p s i i [ n0 ] ;

R2= p s i [ n1 ] ;

I2 = p s i i [ n1 ] ;

R3= p s i [ n2 ] ;

I3 = p s i i [ n2 ] ;

R4= p s i [ n3 ] ;

I4 = p s i i [ n3 ] ;

/ / u p d a t e t h e wave f u n c t i o n

p s i [ n0 ] = Jevo [ 0 ]∗R1−J e v o i [ 0 ]∗ I1 ;

p s i i [ n0 ] = Jevo [ 0 ]∗ I1 + J e v o i [ 0 ]∗R1 ;

p s i [ n1 ]= Jevo [ 1 ]∗R2−J e v o i [ 1 ]∗ I2 ;

p s i i [ n1 ]= Jevo [ 1 ]∗ I2 + J e v o i [ 1 ]∗R2 ;

p s i [ n2 ] = Jevo [ 2 ]∗R3−J e v o i [ 2 ]∗ I3 ;

p s i i [ n2 ]= Jevo [ 2 ]∗ I3 + J e v o i [ 2 ]∗R3 ;

p s i [ n3 ]= Jevo [ 3 ]∗R4−J e v o i [ 3 ]∗ I4 ;

p s i i [ n3 ] = Jevo [ 3 ]∗ I4 + J e v o i [ 3 ]∗R4 ;

}

}

}

}

}
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/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / Nex t s t e p ( t i m e )

vo id s p i n s y s : : vNex tS tep ( ) {

/ / a p l l y exp (− i ∗ t ∗H_x / 2 )

X f i e l d r o t a t i o n ( ) ;

/ / a p l l y exp (− i ∗ t ∗H_z )

C o u p l i n g p h a s e s h i f t ( ) ;

/ / a p l l y exp (− i ∗ t ∗H_x / 2 )

X f i e l d r o t a t i o n ( ) ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / Main f u n c t i o n

vo id s p i n s y s : : run ( ) {

/ / run t h e program f o r t h e number o f t i m e s t e p s

f o r ( i n t j =0 ; j < t i m e s t e p s +1; j ++){

/ / t i m e s t e p s p a s s e d

t = j ;

/ / Begin t h e n e x t u p d a t e S t e p

vNextS tep ( ) ;

}

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / read i n a m a t r i x i n t o a r r a y v o i d s p i n s y s : : readM ( ) {

s t r i n g l i n e ;

i n t row , c o l ;

i f s t r e a m F i l e ( " / home0 / l . h ob l / Documents / NP / J . t x t " ) ;

i f ( F i l e . i s _ o p e n ( ) ) {

row =0;

w h i l e ( ! F i l e . e o f ( ) ) {

g e t l i n e ( F i l e , l i n e ) ;

s t r i n g s t r e a m s s ( l i n e ) ;

c o l =0 ;

w h i l e ( s s >> CMatr ix [ row ] [ c o l ] ) {

c o l ++;

}

row ++;

}

F i l e . c l o s e ( ) ;

}
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e l s e {

c o u t << " Unable t o open f i l e " ;

}

f o r ( i n t i =0 ; i <N; i ++) {

f o r ( i n t j =0 ; j <N; j ++) {

cout <<CMatr ix [ i ] [ j ]<< " \ t " ;

}

cout <<" \ n " ;

}

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / read i n a f i e l d i n t o a r r a y

vo id s p i n s y s : : readH ( ) {

s t r i n g l i n e ;

i n t row , c o l ;

i f s t r e a m F i l e ( " / home0 / l . h ob l / Documents / NP / h . t x t " ) ;

i f ( F i l e . i s _ o p e n ( ) ) {

row =0;

w h i l e ( ! F i l e . e o f ( ) ) {

g e t l i n e ( F i l e , l i n e ) ;

s t r i n g s t r e a m s s ( l i n e ) ;

w h i l e ( s s >> h f i e l d [ row ] ) {

}

row ++;

}

F i l e . c l o s e ( ) ;

}

e l s e {

c o u t << " Unable t o open f i l e " ;

}

f o r ( i n t i =0 ; i <N; i ++) {

cout << h f i e l d [ i ]<< " \ t " ;

cou t <<" \ n " ;

}

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / S t a n d a r t k o n s t r u k t o r

s p i n s y s : : s p i n s y s ( ) {

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / K o n s t r u k t o r 1 ( used )
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s p i n s y s : : s p i n s y s ( i n t t i , i n t S y s t e m s s i z e ) {

v I n i t i a l i s i e r u n g ( t i , S y s t e m s s i z e ) ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / D e s t r u k t o r s p i n s y s : : ~ s p i n s y s ( ) {

f o r ( i n t i = 0 ; i < 2 ; i ++){

d e l e t e [ ] Fevo [ i ] ;

}

d e l e t e [ ] Fevo ;

f o r ( i n t i = 0 ; i < N; i ++){

d e l e t e [ ] CMatr ix [ i ] ;

}

d e l e t e [ ] CMatr ix ;

d e l e t e [ ] Jevo ;

d e l e t e [ ] J e v o i ;

d e l e t e [ ] p s i ;

d e l e t e [ ] p s i i ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

/ / G e t t e r f u n c t i o n s

d o u b l e ∗ s p i n s y s : : g e t p s i ( ) c o n s t {

r e t u r n p s i ;

}

d o u b l e ∗ s p i n s y s : : g e t p s i i ( ) c o n s t {

r e t u r n p s i i ;

}

d o u b l e s p i n s y s : : ge tTime ( ) c o n s t {

r e t u r n s e c ;

}
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spinsys.h

# i n c l u d e < i o s t r e a m >

# i n c l u d e < v e c t o r >

u s i n g namespace s t d ;

c l a s s s p i n s y s {

p r i v a t e :

/ / K l a s s e n V a r i a b l e n

d o u b l e ∗ p s i ;

d o u b l e ∗ p s i i ;

d o u b l e ∗ h f i e l d ;

d o u b l e ∗∗ Fevo ;

d o u b l e ∗∗ Fevo i ;

d o u b l e ∗ Jevo ;

d o u b l e ∗ J e v o i ;

d o u b l e ∗∗ CMatr ix ;

d o u b l e hz ;

d o u b l e gamma ;

d o u b l e d e l t a ;

i n t t i m e s t e p s ;

i n t t ;

d o u b l e J ;

d o u b l e E ;

i n t N;

d o u b l e t a u ;

i n t N s t a t e s ;

d o u b l e t e s t ;

d o u b l e s e c ;

p u b l i c :

/ / K o n s t r u k t o r e n

s p i n s y s ( ) ;

s p i n s y s ( i n t , i n t ) ;

/ / D e s t r u k t o r

~ s p i n s y s ( ) ;

/ / Klassen−Methoden

vo id vNextS tep ( ) ;

vo id v I n i t i a l i s i e r u n g ( i n t , i n t ) ;

vo id run ( ) ;

vo id C o u p l i n g p h a s e s h i f t ( ) ;

vo id X f i e l d r o t a t i o n ( ) ;

vo id F M a t r i x u p d a t e ( ) ;
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vo id J M a t r i x u p d a t e ( ) ;

vo id readM ( ) ;

vo id readH ( ) ;

d o u b l e Energy ( ) ;

d o u b l e ∗ g e t p s i ( ) c o n s t ;

d o u b l e ∗ g e t p s i i ( ) c o n s t ;

d o u b l e getTime ( ) c o n s t ;

} ;
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