
Fachhochschule Aachen
Campus Jülich

Fachbereich: Medizintechnik und Technomathematik,

Studiengang: Technomathematik

Automated Routing in Pedestrian
Dynamics

Masterarbeit

vorgelegt von

Arne Graf

Autor:

Arne Graf

Erstprüfer:

Prof. Dr. Johannes Grotendorst

Zweitprüfer:

Dr. Mohcine Chraibi

Jülich, 2015-10-21

Eigenständigkeitserklärung

Diese Arbeit wurde von mir selbstständig angefertigt und verfasst. Es sind

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt worden.

Ort und Datum Unterschrift

Diese Arbeit wurde betreut von:

Erstprüfer: Professor Dr. Johannes Grotendorst

Zweitprüfer: Dr. Mohcine Chraibi

Die vorliegende Masterarbeit wurde erstellt am:

Department Civil Security and Traffic,

Jülich Supercomputing Centre,

Forschungszentrum Jülich GmbH.

Abstract

In this thesis, the effect of an alternate floorfield is analyzed, by using it

in a newly composed testmodel for pedestrian dynamics. In simulations of

pedestrian movement, the routing of agents1 is an integral part. Routing can

be seen as the composition of two aspects: the global pathfinding through

a geometry and the avoidance of static or dynamic obstacles (like walls or

other agents) in a local situation.

Development of pedestrian simulation shows various models with dif-

ferent answers to the question of navigation. Many of which make use of

manually added elements2 to solve the global pathfinding, which enable the

user to simulate crowd movement in that specific geometry. Other models

use an algorithm with no restriction to the type of geometry, that will yield

a navigation direction. The Gradient Navigation Model(GNM) described by

Dietrich [7] is one of the later. It uses the solution of the Eikonal equation

(see chapter 2.2), which describes a 2-D wave propagation. The wave starts

in the target region and propagates throughout the geometry. Agents are

directed in the opposite direction of the gradient of a floorfield, the afore-

mentioned solution to the Eikonal equation. The Routing using the plain

floorfield will yield non-smooth pathways. This could pose a problem for

models, relying on a well-posed problem: In [7], Dietrich shows the exis-

tance and uniqueness of a solution to his problem-formulation by using the

theorem of Picard-Lindelöf. To apply this theorem, Lipschitz-continuous

first derivatives of the inputfunctions must exist. This contradicts with

non-smooth pathways in a plain floorfield. He solves that problem by in-

troducing a mollifier, which basically takes a locally integrable function and

returns a smooth approximation. Thus he creates a well posed problem.

In this thesis, an enhanced floorfield is described, which addresses the

aforementioned issue (non-smoothness) as a welcome side-effect. A research

group at the Universidad Carlos III de Madrid [14] is working on safe nav-

1An agent is the representation of a pedestrian in the simulation.
2like a domain decomposition by adding helplines

1

igation of robots. Since agents should not follow paths, which come close

to any obstacle, a distance field is created and used in the Fast Marching

algorithm, resulting in smooth pathways, which favor a certain distance to

walls. The researchers take that approach even further, by transforming any

geometry into a skeleton (again using the distance field) and thus having the

domain in which the 2-D wave propagates reduced significantly. Their intent

is to recalculate the floorfield in real-time using it for the reduced viewfield

of a robot’s sensors. Our interest in this sleight of hand is different. We take

special interest in the behavior of agents close to obstacles. The enhanced

floorfield itself yields pathways, which show a wall repulsive character in

the negative gradient close to walls. This component is then used in a new

model.

It is implemented in JuPedSim[1], a simulation suit for pedestrian simu-

lation, developed at the Jülich Supercomputing Centre, Forschungszentrum

Jülich GmbH. It is verified and validated with respect to empirical data.

The results seen in the simulations show remarkably good behavior. The

model is easy to use, fast and shows an organic routing through complex

geometries. The extent to which we alter the floorfield is subject to our

analysis.

2

Contents

1 Pedestrian Dynamics: Introduction 4

1.1 ODE based, microscopic models 6

1.2 JuPedSim . 9

2 Modelling 10

2.1 Motivation . 10

2.2 Eikonal Equation . 12

2.3 Safe Navigation using the Floorfield 13

2.4 Distances-Field . 14

2.5 Wall-Avoid Model . 16

3 Verification and Validation 25

3.1 Basic Tests . 25

3.1.1 Test A . 25

3.1.2 Test B . 26

3.1.3 Test C . 27

3.2 Variation of the Parameter 28

3.3 Compare Trajectories to an existing automated model 31

3.4 Cost of a “full” preprocessing step 32

4 Conclusion and Outlook 36

4.1 Conclusion . 36

4.2 Floorfield . 36

4.2.1 Multiple Goals . 36

4.2.2 Multiple Floors . 37

5 Appendices 38

5.1 Fast Marching Algorithm . 38

5.2 Gradient Model using a Floorfield 39

Literatur 40

3

1 Pedestrian Dynamics: Introduction

Pedestrian dynamics is a field of research trying to investigate the kine-

matic and mechanic of pedestrian crowd movement. Understanding, how

crowds react in different geometries under various circumstances, enables a

safer design of our environment, to best fit the needs of civil and security

engineering. Results are applied to safely conduct large events, to create ar-

chitecture, through which large crowds can safely be moved and to optimize

evacuation time in case of an emergency. At the annual hajj3 in Mecca in

2015, a tragic crowd disaster occurred, where more than 700 pilgrims died

and at least 860 more had been injured [2]. Investigation of this incident is

not completed. Professor Galea from the Fire Safety Engineering Group at

the University of Greenwich predicts, that the frequency of such disasters

worldwide will increase due to the higher densities and Urbanization [3].

Pedestrian dynamics provides approaches to plan large events by cal-

culating estimates for capacities of given geometries, researching crowd be-

havior and applying research results in new designs of civil engineering.

To simulate pedestrian crowds, many models exist with different charac-

teristics. Predtetschenskii and Milinkskii [17] are pioneers in pedestrian

dynamics, conducting experiments as early as 1969. Few years later, Hirai

and Tarui [11] implemented the first known force-based model to simulate

crowd behavior. Since then, new models have been described throughout

the decades. To maintain orientation, these models can be grouped into

classes in the following manner (see figure 1.1):

Macroscopic models tackle crowd behavior without the need to charac-

terize individuals, which make up the crowd. The action of a single agent is

neglected and it is assumed, that aggregated values are sufficient to describe

the crowd behavior. Metrics, e.g. density or flow, are used to describe the

dynamic within the system. Thus a crowd is seen as a continuous fluid,

which can be modeled by these aggregated observables only. No inter par-

ticle relations are explicitly considered. Given a model, which describes

3Islamic pilgramage to Mecca, Saudi Arabia.

4

Macroscopic Microscopic Mesoscopic

Rule-based ODE-based Hybrid

Force-based Velocity-based Other

Figure 1.1: A possible hierarchical classification of models in
pedestrian dynamics in [4]

the change of the density throughout a geometry, it can be mathematically

captured by an PDE. Larger roadmap- and city-traffic-simulation are fields,

where macroscopic models are widely spread and can supply travel times

and point out bottlenecks [12]. There are limitations to this class of models.

They are fast but lack the ability to simulate heterogeneous groups. Nor

can they model individual decisions. In an emergency situation, it has been

observed, that pedestrians stay in a group, even if other exits are available.

This phenomenon is already introduced in microscopic pedestrian models

[8][16]. A macroscopic, flow-based model would also have the pedestrians

use all available exits [13].

Microscopic models consist of mathematical formulations describing the

state and the interactions of every agent. Each agent has a position in the

domain and interacts with its environment. It is assumed that the dynamics

in any crowd is the result of individual actions. Within the model, these

individual actions obviously must be different from the attempt to model

the complete, complex system of a person’s psychology, which defines its

motivation of movement inside a crowd. It is desirable to have few and

simple equations to model the agent’s motivation. In analogy to Newtonian

dynamics, it can be modeled by driving and repelling forces [10]. They lead

to second order ordinary differential equations. A popular starting point

origins in the modeling of the behavior of electrical charges in an electro-

magnetic potential field (see figure 1.2). Charges of the same sign act on

5

each other with a repelling force. This effect is used in the modeling of

the natural collision avoidance of a person with other persons, walls and

obstacles in pedestrian dynamics. Superposing a driving force, that acts on

the agent, steering it towards its destination, is resulting in a force-based

model and can be described by an ODE.4 Force-based and velocity-based

�������
�������
�������
�������

��������������������������
��������������������������
��������������������������
��������������������������

i

j

repelling forces

Wall

Obstacle

Figure 1.2: Forces acting on agent i from: wall, obstacle and
agent j

models are subject of this thesis, so we turn to ODE-based models, which

is the super class to both.

1.1 ODE based, microscopic models

We focus on ODE-based microscopic models, which are successful in produc-

ing system phenomena like congestions in front of bottlenecks and showing

good accordance with experimentally determined fundamental diagrams5

[7]. Despite the good accordance in mentioned phenomenas, second order

based models have a weak spot. They tend to show oscillations in their

trajectories [6]. In a one-dimensional scenario, an agent, approaching a

blockade, would oscillate back and forth with decreasing amplitude instead

of monotonically decreasing its speed and stop. This oscillation is induced

by the system of opposing components of driving and repelling force, which

4For further reference, please see corresponding literature, (e.g. [4]).
5The Fundamental diagram is the relation of pedestrian flow J and crowd density ρ.

6

decelerate the agent in the domain, where the opposing force supersedes.

Once the agent decelerates and stops, it gets accelerated into the opposing

direction until it leaves the domain of supersession (see figure 1.3). Then

the deceleration starts over with opposing direction. Various authors try to

find new models with enhanced characteristics in terms of directing agents

[15][5].

��������������������������
��������������������������
��������������������������
��������������������������Wall

domain of superseding wall force

deceleration until v = 0

acceleration in opposite direction

Figure 1.3: Agent gets stopped and forced back by accelera-
tion of wall force.

The difficult calibration of a model is another important issue. This

type of models find their limit, if a unique set of parameters for various

situations is desired. Best results are achieved with a special calibrated

set of parameters for different situations. The change of parameter sets is

problematic, if we want to make extensive use of parallel solvers. In terms

of ergonomics, a constant set would be more user-friendly.

Velocity-based models, which often lead to first order ODEs, make up

an important subgroup. These models change the agent’s velocity directly

and thus show much better trajectories in terms of oscillation. The Wall-

Avoid-Model of this thesis, is partly derived from the GNM [7], a velocity-

based model. The GNM intends to overcome shortcomings of both groups,

oscillation (SFM) and the difficult mathematical treatment of rule-based

Models, yet have the positive characteristics remain.

A major step towards this goal is the use of a navigation field, given

by the solution to the Eikonal equation. This approach, introduced by

Hartmann [9], provides routing and navigation information. In the GNM,

7

Dietrich divides the navigation into two components. A static and a dynamic

navigation vector are described. The static navigation field comprehends the

geometry, the dynamic navigation field integrates pedestrians and mobile

obstacles. It is clear, that the dynamic navigation field must be computed

for every timestep during the simulation.

Besides oscillation and calibration, there is a third issue, on which we

will focus in the next chapter: Overlapping. It describes a situation, where

an agent’s position is invalid either because the agent’s simulated presence

overlapps with another agent or because it overlapps with a wall or even

an obstacle (see figures 1.4, 1.5). Once an agent is fully clipped through a

wallsurface, faulty trajectories are most certain.

Figure 1.4: Agents get pushed into obstacles by the large
amount of other agents. The agents’ colorcode refers to their
walking speed. (Red := Stopping; Simulated with a force-
based model)

Figure 1.5: Agents remain inside obstacle. (Simulated with
force-based model)

These issues highlight the need to develop pedestrian models and search

for yet another model, which might overcome some of the shortcomings and

can produce as good results as existing models already provide.

8

1.2 JuPedSim

While designing a new pedestrian model, implementation, testing, calibrat-

ing, verification and validation are processes to go through. Next to imple-

menting the model itself, researchers need to calibrate model parameters,

run tests, analyze the simulation results and compare them to empirical data

as part of the validation process. This chain of steps requires an infrastruc-

ture to

• configure simulation inputs, like geometry data, number of agents,

agent parameter and of course model parameter in a defined format,

• run a simulation, which produces the trajectories in a defined format,

• verify the model during implementation phase to the specification,

• visualize the simulation results,

• analyze the results and measure metrices like density, flow and compare

these to empirical data to validate the model.

If there are no tools for the various tasks at hand, a great amount of time

is spent on programming the needed infrastructure. To shift the effort,

which goes into the programming of the environment, to the core task, the

development of pedestrian models, a framework has been created.

The Jülich Pedestrian Simulator (JuPedSim) is an extensible software

framework for simulating and analyzing pedestrians’ motion, which sup-

ports the user in all of the above phases. It consists of three major modules,

a simulation module (JPScore), a visualization module (JPSvis) and a re-

porting module (JPSreport). The input- and output files are XML based

and provide a readable, ergonomic file format. Through JuPedSim, we can

focus on our core task, the model formulation and its implementation. We

are provided with a ready to use framework, so we can then directly for-

mulate our simulation configurations for the test and calibration process.

Results can be visualized with its module JPSvis. JuPedSim is platform

independent, released under the LGPL license and written in C++.

9

2 Modelling

2.1 Motivation

In many of second order models, agents breach wall surfaces and get stuck

inside of walls. This undesired phenomenon highlights the challenge in cali-

brating forces and parameters of existing models, so that agents show valid

natural behavior while not getting overlapping in extreme situations. Espe-

cially in situations of high crowd density, e.g. when facing bottlenecks, over-

lapping can occur.It leads to inaccuracies in measurements, e.g. in counting

and flow calculation.

In the SFM, the walls do have a repulsive force pointing perpendicular

to the wall surface. These forces need to be calibrated to work as intended.

Smaller forces might not be strong enough to avoid overlapping with the

wall if an agent is in between a wall on one side and many other agents on

the other side (see fig. 2.1). The agents on the other side affect that one

agent, forcing him towards the wall, while the wall itself acts on the agent in

the opposite direction. The resulting force could still point in the direction

of the wall, leading to overlapping.

��������������������������
��������������������������
��������������������������
��������������������������

repelling forces

Wall

fwall

fagent

fresult

Figure 2.1: Triangle of forces. Small wall-force in red. Sum
of all forces in blue.

If the repulsive wallforces are too strong, pedestrians will not use the

space close to a wall, even if the domain is very crowded (see fig. 2.2).

10

��������������������������
��������������������������
��������������������������
��������������������������

repelling forces

fwall

Wall

fagent

fresult

Figure 2.2: Triangle of forces. Large wallforce in green. Sum
of all forces in blue.

It is a difficult task, to find a set of parameters, that work as desired

in a broad set of situations and geometries. To overcome the problems

in calibrating and oscillation, we will define a model based on a first-order

ODE. The behavior of agents close to a wall will be the focus. Any mechanic,

that will always keep agents away from walls, will not be sufficient. Agents

shall keep from walls, only if they have the freedom to do so and are not

hindered by surrounding agents. But in situations, where the density is

high, agents shall make use of all the available space, even if they get close

to walls.

A prototype situation for this scenario to be investigated are the bottleneck-

geometries. Here we see a rise in density in front of the point of constriction.

After this description of the model behavior, the components of the model

will be introduced.

The mechanic to supply an agent with the direction, in which to go,

will be a floorfield. It is a field of scalars, that correlates the position in

the geometry with a value indicating the time-cost to reach the destination

from that position, the Eikonal Equation.

11

2.2 Eikonal Equation

The “Eikonal equation” in a domain Ω, subset of Rn,

|∇c(~x)| = F (~x), ~x ∈ Ω,

s.t. c|∂Ω = 0,

yields the “time-cost” c(~x) in a spacial domain, provided a target region

within the domain as input as well as a slownessfield F (~x). A valid inter-

pretation of “time-cost”-isometrics is to picture a wavefront at a given time

t, originating in the target region (t = 0) and propagating throughout the

spacial domain Ω with the given speed v = 1
F (~x) while flowing around any

obstacles (see figure 2.3).

Figure 2.3: Isometrics of “time-cost”.

Given a discretization of the domain Ω and the target region ∂Ω, the so-

lution to the Eikonal equation can be approached by using the Fast Marching

algorithm [18] (see appendix 5.1). The algorithm provides a first order ap-

proximation, yet sufficient for our cause. Computingtime of Fast Marching

is independent6 of the complexity of obstacles and walls.

The negative gradient −∇c of the time-cost field is a useful tool in the

routing of agents to the target region used as one of the algorithm’s inputs.

The resulting trajectories show the shortest path to the destination region.

We will refer to the result of the Fast Marching Algorithm as “floorfield”.

6Fast Marching completion time depends mainly on the length of the wavefronts. If the
geometry leads to small lengths, as in geometries with large amounts of narrow corridors,
completion time decreases.

12

To successfully use these floorfields, we discuss and analyze a modification,

which gives us smooth trajectories, as proposed in [14].

2.3 Safe Navigation using the Floorfield

When using the plain approximation to the Eikonal Solution, agents an-

ticipate a non smooth pathway that leads very close to walls (see white

trajectories in figure 2.7). In many models for pedestrian dynamics, agents,

which are very close to walls or obstacles, could overlap with them in rare

occasions. They might leave the valid domain and find themselves captured

inside walls or obstacles. Yet in reality, we can observe, pedestrians avoiding

walls and obstacles with a certain distance.

Therefore, it is desirable to define a modified quality of an optimal route,

which accounts for a minimal arrival time and a safe pathway. Safe in respect

to avoiding the vicinity of walls and obstacles, whenever possible. It is clear,

that altering the floorfield will result in different trajectories. They are no

longer the shortest pathways.

In high density situations, the agent shall use all available space. This

will be achieved by the way we integrate the floorfield into the velocity

vector. If a space is very crowded (high density), then agents should make

use of the given space even if that means getting close to walls.

How can an agent “avoid” the close vicinity of any wall or obstacle via

an enhanced floorfield?

13

2.4 Distances-Field

Figure 2.4: Distances field d(~x) of a bottleneck geometry

Having above question in mind, we first need to introduce and understand

the Distances field, a function d living on the spacial domain Ω, that holds

information on how distant the closest wall is. This function will prove

useful when altering the one floorfield, we will use for routing. To avoid

confusion, let it be emphasized, that this distances field will be used in two

different parts of the model. It is used to:

1. create a Direction-to-Wall Field (vector field) and

2. to create a slowness field (scalar field) to initialize the Fast Marching

algorithm of the Navigation Field.

The Direction-to-Wall Field is a normalized vector field. Each vector

has unit length. The orientation is gained by the negative gradient to the

Distances Field. This way, every given vector at ~x directs to the closest wall

of that given grid-point ~x.

The function value d(~x) will be used to create a slowness field on the

discrete grid. This slowness field F holds the value, which determines, how

slow the 2-D wave will propagate over the gridpoint in the final navigation

field. We create a band around walls with the width ω. Only within this

band, the wavefront of the Eikonal equation is slowed down. Points, that are

within a distance of the ω-band to a wall, have a corresponding low speed

14

create distance field
d

create slowness field
F

create navigation floor-field
c

create vector field
(−1) ∇c

‖∇c‖ = ~uff

create vector field
(−1)∇d

Figure 2.5: Usage of the Distances Field in both vector fields

value v = 1
F

(see figure 2.6). Routes within the ω-band will take more time

d(~x)

F−1(~x) = v(d(~x))

1

1

0.4 0.8

vω=0.0(d)
vω=0.4(d)
vω=0.8(d)

Figure 2.6: Relation of wave propagation speed v = F−1 and
distances field for different values of ω.

per gridpoint and be less optimal in a sense, that combines travel distances

and wall avoidance. We will refer to the value c(~x) as the time-cost value

(cost in short). The effect of this enhancement is seen in figure 2.7.

15

Figure 2.7: Isolines of a floorfield (above) compared to isometrics of the
enhanced floorfield (below). Sample trajectories in white.

The vectors of the resulting navigation field close to walls are pointing

away from the wall. The effect is best shown by plotting two sample trajec-

tories in both navigation fields. In figure 2.7 above, the agents are routed

alongside of walls, whereas below, they avoid walls even if starting close to

a wall.

2.5 Wall-Avoid Model

The Wall-Avoid model is velocity-based, using

∂x = ∂t · v(t).

The (Euler)-discretization shall be

∆x = ∆t · v(ti),

16

where v(ti) implements the core of the model, aiming for the avoidance

of faulty interaction of pedestrians and walls while maintaining the pos-

itive characteristics of reproducing pedestrian crowd behavior (e.g. lane-

formation).

There are three mechanics used in the model to avoid “overlapping” in

the vicinity of walls:

1. The routing of pedestrians makes use of the Eikonal equation, com-

puted with an inhomogeneous slowness field, F (x), whose resulting

floorfield7 favors keeping a distance to obstacles, walls and corners.

2. In a slowdown-band the angle between an agent’s moving direction

and the wallsurface’s perpendicular affects the moving speed if and

only if the agent’s moving vector includes a component geared towards

the wall. This is achieved by using the scalar product of the moving

direction and the wallsurface’s perpendicular.

3. If an agent’s distance to a wall drops below a threshold αr, it is redi-

rected to move parallel to the wall if and only if the agent’s moving

vector includes a component geared towards the wall.

In order to keep the model simple, repulsive wall forces as seen in Social

Force Models are omitted. An analogy to repulsive pedestrian forces though

is used to keep agents from colliding with each other. The model differs

from SFMs, as in SFMs, other agents repulsive forces are transformed into

acceleration vectors and from there into a velocity component, which is part

of the agent’s velocity. We have already seen, that this induces oscillations.

In this model though, repulsive influences are not treated as Newton me-

chanics teaches us, but are only used to factor the repulsive pedestrian effect

into a direction component. The speed on the other hand is effected by the

other agents only to a certain degree. To show this in the formulation of the

model, we used~i to describe repulsive influences in order to avoid mistaking

these components for forces.

7see chapter Eikonal Equation, Safe Navigation using the Floorfield

17

Table 2.1: Parameters used:

parameter value description

ω [0.0, 1.6]
threshold for reduced

propagation speed (Eikonal)

αs 0.6
threshold for wall distance,

agents get slowed down if closer

αr 0.3
threshold for wall distance,
agents get redirected if closer

α 0.8
weight for linear combination of

preceding and current unit speed vector

a 15
asymptotic value of Gompertz function

(agent to agent influence)

b 0.25
cut off radius of influence

(Gompertz function)

b 3 steepness of Gompertz function

Symbols:

•
~i denotes the influence vector among agents. The correlation of dis-

tance and influence is the Gompertz function f(x) = a · e−b·e−c·x

. The

function is smooth and adjustable in its asymptotic value (a), range

of influence (b) and steepness, which we can interpret as the elastic

modulus of two enclosing agents(c). Influence only applies to agents

within a view angle β ≤ 100 ◦ of the current agent.

ui

uj

i

j ~xj − ~xi

∢β

ui

Figure 2.8: Influence taken into account only if agent is catch-
ing up to agent in his view. Here, agent j is in view, but i is
not catching up. (γ > 90 ◦)

• ~u denotes the unit speed vector. At any time, we store the calculated

orientation in this vector. It’s length is always ≤ 1unit. We call it

18

unit speed vector, as in most cases, it is the velocity vector with the

speed of 1m/s. We multiply it with the agent’s desired speed value to

get the velocity vector of the current agent at the current timestep.

• ~x denotes the position vector of an agent in R
2.

• v0 denotes the agent’s desired speed.

Modul Parameter:

• α denotes the weight of the unit speed vector of the previous timestep.

(1− α) is the weight of the current unit speed vector. (here α = 0.8.)

• αs is the width of the slow down band. Any agent, that is closer to

a wall than αs will be slowed.

• αr is the width of the redirection band. Any agent within will be

redirected to move parallel to the wall.

• ω is the wall avoid distance. It describes the bandwidth around

walls, in which the navigation wavefront is slowed down. (see figure

2.6)

• a, b, c are parameters of the Gompertz function and can be set in

the configuration file of a simulation.

Functions:

Let Ω be the discrete set of gridpoints in the bounded domain, which holds

the geometry of the simulation, a subset of R2. The following functions will

be used in the model formulation and shall be introduced:

d : Ω ∋ ~x −→ d(~x) ∈ R, Ω ⊆ R
2

assigns to each gridpoint in Ω the distance to the closest wall. It will be used

to choose, in which mode the movement vector candidate will be altered.

19

(Modes are: regular, slowdown and redirect)

P : R2 × Ω ∋ (~u, ~x) −→ P (~u, ~x) ∈ R
2

describes the orthogonal projection of a given orientation ~u onto the closest

wall of ~x. It yields an orientation parallel to that wall.

uff : Ω ∋ ~x −→ uff (~x) = ~uff ∈ R
2|‖·‖

2
=1

is the (normalized) negative gradient of the navigation floorfield at position

~x. This vector describes the direction of the negative gradient only and

always has unit length. It is used to contribute directly to an agent’s unit

velocity vector.

g : R2 ∋ ~u −→ g(~u) ∈ R
2|‖·‖

2
≤1

limits the length of any input vector ~u to unit length. If ‖~u‖2 ≤ 1, then g is

the identity of ~u.

n
∑

j=1

~irep,j :
n
⊗
j=1

R
2
j ∋ (~i1, ...~in) −→

n
∑

j=1

~irep,j ∈ R
2

is adding the distance-dependant8 repelling influence of neighboring agents

within a close vicinity. This sum is analog to the SFM model, yet the

resulting influence is directly taken and not converted to an acceleration nor

to a velocity. The character i is a hint to being an influence vector, not to

being a velocity.

Velocity vector v0 · ~un,res in timestep n:

8The correlation of distance and influence is the Gompertz function f(x) = a·e−b·e
−c·x

.
The function is smooth and adjustable in scale, range of influence and steepness by the
parameter a,b,c.

20

~un,pre = α · ~un−1,res + (1− α) · g



g(~uff) + g(

n
∑

j=1

~irep,j)





~un,res =















































(1− 〈~un,pre,−∇d〉) P (~un,pre) if (d(~x) < αr) ∧

(〈~un,pre,−∇d〉 ≥ 0)

(1− 〈~un,pre,−∇d〉) ~un,pre if (αr < d(~x) < αs) ∧

(〈~un,pre,−∇d〉 ≥ 0)

~un,pre else;

∆~xn = ∆t · v0 · ~un,res.

21

set timestamp t, i = 0

get Neighbors
of ped i, j = 0,

sum = 0

get Neighbor j
is influ-
encing
ped i?

add influence
to sum

more
neighbors
to ped i?

calculate
g(sum)

calculate
g(g(sum) +

g(∇c))

calc α oldmov
+(1 − α)
newmov

is in
slowdown

band

geared
towards
wall

is in redi-
rection
band

redirect
to move

parallel to wall

slowdown
with (1 −

〈~un,pre,−∇d〉)
move agent i

next
pedes-
trian?

yes
noyes

j = j + 1

no

yes

no

yes

no
yes

no

yes

i = i+ 1

no

t = t+∆t

Anti Agent Overlapping

Anti Wall Overlapping

Figure 2.9: Calculation of pedestrian movement during one timestep

What might seem curious at first, is the fact, that both, the navigation

field ~uff and the sum of pedestrian influences
∑

~irep,j , are restricted to the

length of one unit by function g. Then their sum in turn is restricted again.

22

This obviously breaks the principle of superposition of forces. We cannot

talk about a force-based model here and loose the analogy to Newton’s

second law the first time applying g on the sum of influences
∑

~irep,j . The

resulting vector indicates a new orientation and a slow-down mechanic, as

the vector can be of length ≤ 1 unit.

The sum of the navigation field (static) and the accumulated pedestrian

forces (dynamic) are restricted by g and then weighted by (1−α), the speed

vector of the last timestep gets weighted by α. This is done to reduce

flickering9 of agents. By using the unit speed vector of the preceding time-

step, we introduce a discrete approximation of ∂v = f(t, x, v(x, t)). It is

important to limit that effect. Otherwise we end up with a second-order

model. The weighted sum limits the change of orientation and thus an

agent could oscillate between two opposing walls. If oscillation should occur

in any case, the weight should be shifted away from the preceding timestep.

This way, the effect of second-order ODEs gets diminished.

In the next step, we process ~un,pre. The distance to the next wall is

checked and if the agent is closer than αs to any wall, we calculate the

scalar product 〈~un,pre,−∇d̂〉 to evaluate, if there is a component towards

the closest wall. In this case, the agent is slowed down (see figure 2.10). If

��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������

≤ αs

~un,res

~un,pre

Wall

Figure 2.10: Slowdown: Reduction of the unit speed vector
to avoid clipping

the agent is already very close to the wall, (d ≤ αr), the velocity component

9We call the change in direction back and forth in every timestep flickering. We want
to shortly address a second alternative approach. If one is willing to accept flickering
agents with fast changing orientations, one could omit the velocity vector of the timestep
(n − 1) and postprocess the trajectories. As we only get positions at discrete timesteps,
one could easily create a smooth trajectory by using B-splines.

23

towards the wall gets neglected. Thus, the agent gets directed to move

parallel to the wall (see figure 2.11). αs and αr define the widths of two

bands, in which we alter the vector ~un,pre (pre for prediction) to get the

final unit speed vector ~un,res (res for resulting). The bands are arranged as

pictured in figure 2.12.

��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������

≤ αr ~un,pre

~un,res

Wall

Figure 2.11: Redirection of the unit speed vector to avoid
clipping

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������

Wall

redirect

slowdown

αr

αs

Figure 2.12: Slowdown and redirection band alongside a wall.

24

3 Verification and Validation

In this chapter, we want to describe applicable tests to the Wall-Avoid

model. First, we validate basic fundamentals any pedestrian model should

pass. Further, it is verified, that we see no overlapping and that the crowd

shows typical phenomena, like lane-formation [20]. Following our set of tests,

we will then validate the Wall-Avoid model to produce the pedestrian flow in

bottleneck experiments, corresponding to empirical data. This verification is

widely considered the most important criterion to validate simulation results

[19]. We will further compare the trajectories with a different model, one

using automated triangulation to assist routing.

3.1 Basic Tests

The validation of a model is a complex task and makes up a separate re-

search field. Researchers in the field of Civil Engineering are working on

various approaches on how to validate a model. The research group, CST -

Pedestrian Dynamics and Traffic Simulation, is developing a set of testcases

any serious model should aim to pass. Tests include the behavior of a single

moving agent passing static objects like a dummy agent or an obstacle.

TheWall-Avoid model, implemented in its current state in the simulation

suit JuPedSim[1], passed these applicable tests and it was shown, that the

basic mechanics of the routing are working as specified. Yet to complete

validation of the model on a more complex level, the floorfield needs to

support multiple destinations. This would enable test with bidirectional

flows and more.

3.1.1 Test A

In the first test, we see a corridor, a moving agent and a dummy agent

positioned in the line of sight to the destination (figure 3.1). This test is

passed, if the moving agent will pass the dummy agent without overlapping

or tunneling.

25

Figure 3.1: Testcase 1: passing a static dummy agent.

Figure 3.2: Simulation Result: Agent is passing the dummy
agent.

As figure 3.2 shows, the agent passed the dummy agent. As the dummy

agent is not defined in the geometry, it is not considered in the calculation

of the floorfield. The composition of floorfield and agent-to-agent influence

leads to this trajectory. The moving agent is not anticipating the dummy

agent.

3.1.2 Test B

In the second test (see figure 3.3), the corridor is narrowed down, so that

there is not enough space to pass the static agent on either side. The test

is passed, if the moving agent will be unable to pass the dummy agent.

26

Figure 3.3: Testcase 2: no passing of a static dummy agent.

Figure 3.4: Simulation Result: Agent stops before the
dummy. Red color indicates v = 0.

Simulation Result (see figure 3.4) show, that the test is passed. The

agent stops as specified.

3.1.3 Test C

The last of the basic tests describes a situation as depicted in figure 3.5.

The destination of the agent is out of sight. The test is passed, if the

agent can reach the exit on the left side. In the plot of the simulation

Figure 3.5: Testcase 3: reaching a goal out of sight.

result (figure 3.6) we see, that the agent can anticipate the static object

27

Figure 3.6: Simulation Result: Navigation Field and trajec-
tory of the agent.

in advance. The smooth trajectory shows the capability of the enhanced

floorfield to anticipate obstacles in advance.

3.2 Variation of the Parameter

The following test analyzes the wall-avoid-distance ω and proves the effective

treatment of agent-wall interaction. We simulate bottleneck experiments

with bottleneck widths 0.8m ≤ w ≤ 2.5m. Each geometry is tested with

ω = 0.0, which results in the plain floorfield and with ω > 0.0, which results

in enhanced floorfields. In figure 3.8, we see snapshots of the test simulation.

Without the enhanced floorfield, many agents walk alongside the walls, both

in the entering-section before the bottleneck and within the bottleneck. At

the time of the snapshot, agents already crowd before the bottleneck and use

all available space. This usage of available space is seen in the simulation

with ω > 0 also. Right after the bottleneck, agents walk right towards the

exit when using the plain floorfield (above). The other simulations (middle

and below) show the effect, that agents will avoid the vicinity of walls, if

they are not hindered and pedestrian density is low. This wall avoidance is

also seen in the first phase of the experiments. The first agents entering the

bottleneck have the possibility to walk to the middle of the geometry. The

more we increase ω, the more we can see the effect of a spearhead (see figure

28

Figure 3.7: Bottleneck Experiment:
above: width: 2m, ω = 0.0m
middle: width: 2m, ω = 0.8m
below: width: 2m, ω = 1.6m

). We get a better look at this effect, when plotting all trajectories as seen

in figure 3.9. The effect of the parameter ω can be seen. The bottleneck

reduces the pedestrian speed in front of it. If ω is chosen to high, the agents

avoid the walls after the bottleneck. Seen in the trajectories narrowing down

even further.

The reduction of the flow can be seen in figure 3.10, as w decreases. After

the bottleneck, the pedestrians can accelerate again. Figure 3.10 shows the

results of experiments, conducted by Kretz in 2006 and Seyfried in 2009.

The comparison also validates the model to yield a fundamental diagram like

29

Figure 3.8: Bottleneck Experiment:
above: width: 2m, ω = 0.0m
middle: width: 2m, ω = 0.8m
below: width: 2m, ω = 1.6m

seen in real world experiments: The calculated flow through the bottleneck

shall match the empirical data. It can be seen, that the more the agents will

strive to avoid obstacles and walls, the lesser the flow will be (see 3.10).

The simulation result also shown, that without the enhancement of the

floorfield, few agents do not pass the bottleneck, but get caught inside of

walls (see figure 3.11).

30

Figure 3.9: Bottleneck Experiment:
above: width: 2m, ω = 0.0m
middle: width: 2m, ω = 0.8m
below: width: 2m, ω = 1.6m

3.3 Compare Trajectories to an existing automated model

The title of this section is surely forcing some questions. What does the au-

thor mean by automated models. In the context of this thesis, we distinguish

among models that need manual alteration of a specified geometry input,

e.g. domain decomposition, for the router to function and models that only

need the geometry data (see Abstract). If we only allow models of the later,

we can transform models of the first class to an automated model by using

a form of automated decompositor. In the following, a model that requires

the line of sight for an agent to reach an intermediate goal, the manually

helplines get replaced by a triangulation. So now we can compare two mod-

31

Figure 3.10: Diagram with empiric data and simulation re-
sults of various Bottleneck widths.
Data from: 2006 EG, 2006 Kretz, 2009 Seyfried.

els of the same class, and qualify the trajectories of both simulations. (see

fig. 3.12) It is seen, that the trajectories of the new Wall-Avoid model have

an organic look. They don’t have the zig-zag look, seen in the left snapshot

(figure 3.12). It is hard to quantify that organic effect, so the qualitative

comparison shall suffice.

3.4 Cost of a “full” preprocessing step

Close to all time of the needed computation spent on the enhanced floorfield,

the prohibition of overlapping, is spent in a preprocessing step before the

actual simulation starts and therefore does not effect the real-time factor. In

this Wall-Avoid Model, the preprocessing is increased compared to a GNM.

Where Dietrich uses the Eikonal solution once (mollifiers not considered),

the Wall-Avoid Model uses two runs through the Fast Marching algorithm

32

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.5

bottleneck width

0

5

10

15

20

25

30

35

40
ov
er
la
p
p
in
g
a
g
en
ts

Agents lost using ω = 0

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Figure 3.11: Agents lost by overlapping with plain floorfield.

Figure 3.12: Comparison between trajectories: Routing with helplines
through triangulation (left) to routing with navigation field (right).

(FMA). In this chapter we want to elaborate on the doubled effort we spend.

The granularity of the rectangular grid governs the cost of the FMA10.

For pedestrian navigation, we chose a point-to-point distance of neighboring

gridpoints of 0.0625m. A geometry spanning 100×100m2 can be processed

10Fast-Marching

33

in 37 seconds.11 Including storing all floorfields and gradient fields, process-

ing time rises to 65 seconds.

The Fast Marching algorithm is that fast, that it basically can be ne-

glected when rating the performance. A prequel Fast Marching run does

not change that verdict. The usage of the Direction-to-Wall Field in the

model shows no more overlapping and seems easily worth the cost. During

runtime, using the floorfield or the Distance-to-Wall field means reading a

vector and performing up to 2 scalar products.

To show the performance of the Wall-Avoid Model, we started a simu-

lation in a complex geometry with more than 3000 agents (see figure 3.13).

Compared to other models available in JuPedSim [1], we could not see any

significant performance difference. The trajectories improved and look much

more natural. This was achieved without the need to manually adding de-

composing helplines or intermediate navigation goals.

11Measured on a single core of a Intel© Core™ i7-3610QM CPU @ 2.30GHz

34

Figure 3.13: Simulation of a complex geometry with multiple exits and 3000
agents

35

4 Conclusion and Outlook

4.1 Conclusion

In this thesis, an altered usage of an enhanced floor field was shown, inte-

grated in a suitable new Wall-Avoid Model. The wall-avoid distance pa-

rameter was analyzed and shown to be able to show good convergence to

empirical data. During the course of the work process, it became clear how

versatile and powerful floorfields can be. Not only in the current state,

they can provide valuable assistance to pedestrian models, but they can be

further developed to fit into many more contexts.

The parameters of the model are calibrated as follows: The wall-avoidance

parameter ω = 0.8m shows best convergence with empirical data as well as

the most natural behavior, when visualizing the simulation results. The

bandwidth of the slowdown-band is chosen to be αs = 0.6m, the redirection

bandwidth is αr = 0.6m.

4.2 Floorfield

4.2.1 Multiple Goals

The floorfield is a useful tool in routing of pedestrians through any geom-

etry. To unfold its full power, one can advance to calculate a floorfield for

each of many atomic goals12. The combination of many floorfields, each

corresponding to an atomic goal, can easily be managed by selecting the

direction vector of the one floorfield, that provides the minimal time-cost of

an active set of floorfields evaluated at the gridpoint of the current agent’s

position. Dynamic world events in a simulation could alter the set of active

floorfields. This way, models can implement navigation in a dynamically

changing world. It can be a tool in a simulation suit, which has agents

change their destination during runtime. This would be realized by simply

changing the active set to the floorfields corresponding to the new situation.

12An atomic goal would be a single exit door, whereas a destination could consists of a
set of doors/exits.

36

4.2.2 Multiple Floors

In the current state, the floorfield provides time-cost on a discrete grid, a

rectangular grid with equidistant spacing in each dimension. The gridpoints

are stored in a one dimensional array by the row-major order. In an ar-

rangement like this, it is easy to formulate 4-neighboring13 relations. These

values are easily accessed, if you are provided the stride value, namely how

much gridpoints make up the length of both dimensions in a 2-D world. The

Fast Marching algorithm needs the time-cost values of the 4-neighborhood.

This will change, if you need to simulate in a building with multiple floors,

which are connected via stairs. We need to introduce a new mechanic, which

can be treated equally handy inside each floor. Any position, projected onto

the x-y plane, may not be unique anymore. On the other hand, it would

be a waste of memory, if a third dimension would be introduced14 in that

way, to represent the hull cube circumscribing a building. One must find a

solution, which describes the geometry of the rooms in a memory efficient

way and yet be able to comfortably access the 4-neighbors’ time-cost value.

13Gridpoints north, south, east and west to the current are called 4-neighbors.
14As we are interested in points representing the floor of a room, all the volume (air)

above would be not used.

37

5 Appendices

5.1 Fast Marching Algorithm

User FloorfieldViaFM Trial

Create and Init(...)

Create and Init(...)

All points are marked unknown

Add target points to narrowband

remove minimum from narrowband

add minimum to known set

calc cost of minimum’s unknown neighs

add unknown neighbors to narrowband

while narrowband not emptywhile narrowband not empty

save floorfield

38

5.2 Gradient Model using a Floorfield

User GradientModel DirectionStrategy FloorfieldViaFM

Create and Init(...)

Create and Init(...)

Create and Init(...)

for each agent

getTarget()

getDirectionAt()

return movDir

return movDir

getDir2Wall()

getDir2Wall()

return dir2Wall

return dir2Wall

getDistance2Wall()

getDistance2Wall()

return distance2Wall

return distance2Wall

calc moving vector

run simulationrun simulation

39

References

[1] Jupedsim. http://www.jupedsim.org.

[2] BBC. Hajj stampede: What we know so far
www.bbc.com/news/world-middle-east-34357952, 2015.

[3] L. Benedictus. http://www.theguardian.com/world/2015/oct/03/hajj-
crush-how-crowd-disasters-happen-and-how-they-can-be-avoided
hajj crush: how crowd disasters happen, and how they can be avoided,
2015.

[4] M. Chraibi. Validated force-based modeling of pedestrian dynamics.
PhD thesis, Universität zu Köln, March, 15 2012.

[5] M. Chraibi, U. Kemloh, A. Seyfried, and A. Schadschneider. Force-
based models of pedestrian dynamics. Networks and Heterogeneous

Media, 6(3):425–442, 2011.

[6] M. Chraibi, A. Seyfried, and A. Schadschneider. Generalized centrifugal
force model for pedestrian dynamics. Physical Review E, 82:046111,
2010.

[7] F. Dietrich and G. Köster. Gradient navigation model for pedestrian
dynamics. Arxiv e-prints, 2014.

[8] J. Ding, X. Ling, H. Huang, and I. Takashi. Herding effect in coupled
pedestrian-pedestrian interacting dynamics. Chinese Physics Letters,
28(12):128301, 2011.

[9] D. Hartmann. Adaptive pedestrian dynamics based on geodesics. New
Journal of Physics, 12:043032, 2010.

[10] D. Helbing. Traffic and related self-driven many-particle systems. Rev.
Mod. Phys., 73:1067–1141, 2001.

[11] K. Hirai and K. Tarui. A simulation of the behavior of a crowd in
panic. In Proc. of the 1975 International Conference on Cybernetics

and Society, pages 409–411, San Francisco, 1975.

[12] INRO. http://www.inrosoftware.com/en/products/emme/, 2015.

[13] P. Marno. Crowded - macroscopic and microscopic models for pedes-
trian dynamics, 2002.

[14] L. Moreno. Fast marching, roboticslab.uc3m.es/roboticslab/research/fast-
marching, 2014.

40

[15] M. Moussäıd, D. Helbing, and G. Theraulaz. How simple rules deter-
mine pedestrian behavior and crowd disasters. PNAS, 2011.

[16] G. J. Perez and C. Saloma. Allelomimesis as escape strategy of pedes-
trians in two-exit confinements. Physica A: Statistical Mechanics and

its Applications, 388(12):2469–2475, jun 2009.

[17] W. M. Predtechenskii and A. I. Milinskii. Personenströme in Gebäuden

- Berechnungsmethoden für die Projektierung. Verlagsgesellschaft
Rudolf Müller, Köln-Braunsfeld, 1971. Original in Russian, Stroiizdat
Publishers, Moscow, 1969.

[18] J.A. Sethian. A Marching Level Set Method for Monotonically Advanc-

ing Fronts. Proc. Nat. Acad. Sci., 1996.

[19] A. Seyfried and A. Schadschneider. Fundamental diagram and val-
idation of crowd models. In H. Umeo, S. Morishita, K. Nishinari,
T. Komatsuzaki, and S. Bandini, editors, Cellular Automata, vol-
ume 5191/2008 of Lecture Notes in Computer Science, pages 563–566.
Springer Berlin / Heidelberg, 2008.

[20] Q. Zhang and B. Han. Simulation model of pedestrian interactive be-
havior. Physica A, 390:636–646, 2011. Article in Press, Uncorrected
Proof.

41

