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Abstract

In this thesis, the effect of an alternate floorfield is analyzed, by using it
in a newly composed testmodel for pedestrian dynamics. In simulations of
pedestrian movement, the routing of agents' is an integral part. Routing can
be seen as the composition of two aspects: the global pathfinding through
a geometry and the avoidance of static or dynamic obstacles (like walls or
other agents) in a local situation.

Development of pedestrian simulation shows various models with dif-
ferent answers to the question of navigation. Many of which make use of
manually added elements? to solve the global pathfinding, which enable the
user to simulate crowd movement in that specific geometry. Other models
use an algorithm with no restriction to the type of geometry, that will yield
a navigation direction. The Gradient Navigation Model(GNM) described by
Dietrich [7] is one of the later. It uses the solution of the Eikonal equation
(see chapter 2.2), which describes a 2-D wave propagation. The wave starts
in the target region and propagates throughout the geometry. Agents are
directed in the opposite direction of the gradient of a floorfield, the afore-
mentioned solution to the Eikonal equation. The Routing using the plain
floorfield will yield non-smooth pathways. This could pose a problem for
models, relying on a well-posed problem: In [7], Dietrich shows the exis-
tance and uniqueness of a solution to his problem-formulation by using the
theorem of Picard-Lindelof. To apply this theorem, Lipschitz-continuous
first derivatives of the inputfunctions must exist. This contradicts with
non-smooth pathways in a plain floorfield. He solves that problem by in-
troducing a mollifier, which basically takes a locally integrable function and
returns a smooth approximation. Thus he creates a well posed problem.

In this thesis, an enhanced floorfield is described, which addresses the
aforementioned issue (non-smoothness) as a welcome side-effect. A research

group at the Universidad Carlos IIT de Madrid [14] is working on safe nav-

! An agent is the representation of a pedestrian in the simulation.
2like a domain decomposition by adding helplines



igation of robots. Since agents should not follow paths, which come close
to any obstacle, a distance field is created and used in the Fast Marching
algorithm, resulting in smooth pathways, which favor a certain distance to
walls. The researchers take that approach even further, by transforming any
geometry into a skeleton (again using the distance field) and thus having the
domain in which the 2-D wave propagates reduced significantly. Their intent
is to recalculate the floorfield in real-time using it for the reduced viewfield
of a robot’s sensors. Our interest in this sleight of hand is different. We take
special interest in the behavior of agents close to obstacles. The enhanced
floorfield itself yields pathways, which show a wall repulsive character in
the negative gradient close to walls. This component is then used in a new
model.

It is implemented in JuPedSim[1], a simulation suit for pedestrian simu-
lation, developed at the Jiilich Supercomputing Centre, Forschungszentrum
Jilich GmbH. It is verified and validated with respect to empirical data.
The results seen in the simulations show remarkably good behavior. The
model is easy to use, fast and shows an organic routing through complex
geometries. The extent to which we alter the floorfield is subject to our

analysis.
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1 Pedestrian Dynamics: Introduction

Pedestrian dynamics is a field of research trying to investigate the kine-
matic and mechanic of pedestrian crowd movement. Understanding, how
crowds react in different geometries under various circumstances, enables a
safer design of our environment, to best fit the needs of civil and security
engineering. Results are applied to safely conduct large events, to create ar-
chitecture, through which large crowds can safely be moved and to optimize
evacuation time in case of an emergency. At the annual hajj® in Mecca in
2015, a tragic crowd disaster occurred, where more than 700 pilgrims died
and at least 860 more had been injured [2]. Investigation of this incident is
not completed. Professor Galea from the Fire Safety Engineering Group at
the University of Greenwich predicts, that the frequency of such disasters
worldwide will increase due to the higher densities and Urbanization [3].

Pedestrian dynamics provides approaches to plan large events by cal-
culating estimates for capacities of given geometries, researching crowd be-
havior and applying research results in new designs of civil engineering.
To simulate pedestrian crowds, many models exist with different charac-
teristics. Predtetschenskii and Milinkskii [17] are pioneers in pedestrian
dynamics, conducting experiments as early as 1969. Few years later, Hirai
and Tarui [11] implemented the first known force-based model to simulate
crowd behavior. Since then, new models have been described throughout
the decades. To maintain orientation, these models can be grouped into
classes in the following manner (see figure 1.1):

Macroscopic models tackle crowd behavior without the need to charac-
terize individuals, which make up the crowd. The action of a single agent is
neglected and it is assumed, that aggregated values are sufficient to describe
the crowd behavior. Metrics, e.g. density or flow, are used to describe the
dynamic within the system. Thus a crowd is seen as a continuous fluid,
which can be modeled by these aggregated observables only. No inter par-

ticle relations are explicitly considered. Given a model, which describes

3Islamic pilgramage to Mecca, Saudi Arabia.



Macroscopic Microscopic Mesoscopic

Pl TN

Rule-based ODE-based Hybrid
/ \,_A
Force-based Velocity-based Other

Figure 1.1: A possible hierarchical classification of models in
pedestrian dynamics in [4]

the change of the density throughout a geometry, it can be mathematically
captured by an PDE. Larger roadmap- and city-traffic-simulation are fields,
where macroscopic models are widely spread and can supply travel times
and point out bottlenecks [12]. There are limitations to this class of models.
They are fast but lack the ability to simulate heterogeneous groups. Nor
can they model individual decisions. In an emergency situation, it has been
observed, that pedestrians stay in a group, even if other exits are available.
This phenomenon is already introduced in microscopic pedestrian models
[8][16]. A macroscopic, flow-based model would also have the pedestrians
use all available exits [13].

Microscopic models consist of mathematical formulations describing the
state and the interactions of every agent. Each agent has a position in the
domain and interacts with its environment. It is assumed that the dynamics
in any crowd is the result of individual actions. Within the model, these
individual actions obviously must be different from the attempt to model
the complete, complex system of a person’s psychology, which defines its
motivation of movement inside a crowd. It is desirable to have few and
simple equations to model the agent’s motivation. In analogy to Newtonian
dynamics, it can be modeled by driving and repelling forces [10]. They lead
to second order ordinary differential equations. A popular starting point
origins in the modeling of the behavior of electrical charges in an electro-

magnetic potential field (see figure 1.2). Charges of the same sign act on



each other with a repelling force. This effect is used in the modeling of
the natural collision avoidance of a person with other persons, walls and
obstacles in pedestrian dynamics. Superposing a driving force, that acts on
the agent, steering it towards its destination, is resulting in a force-based

model and can be described by an ODE.? Force-based and velocity-based

/////////

Obstacle ¥

repelling forces

725 7
Figure 1.2: Forces acting on agent ¢ from: wall, obstacle and

agent j

models are subject of this thesis, so we turn to ODE-based models, which

is the super class to both.

1.1 ODE based, microscopic models

We focus on ODE-based microscopic models, which are successful in produc-
ing system phenomena like congestions in front of bottlenecks and showing
good accordance with experimentally determined fundamental diagrams®
[7]. Despite the good accordance in mentioned phenomenas, second order
based models have a weak spot. They tend to show oscillations in their
trajectories [6]. In a one-dimensional scenario, an agent, approaching a
blockade, would oscillate back and forth with decreasing amplitude instead

of monotonically decreasing its speed and stop. This oscillation is induced

by the system of opposing components of driving and repelling force, which

“For further reference, please see corresponding literature, (e.g. [4]).
5The Fundamental diagram is the relation of pedestrian flow J and crowd density p.



decelerate the agent in the domain, where the opposing force supersedes.
Once the agent decelerates and stops, it gets accelerated into the opposing
direction until it leaves the domain of supersession (see figure 1.3). Then
the deceleration starts over with opposing direction. Various authors try to
find new models with enhanced characteristics in terms of directing agents

[15][5].

i domain of superseding wall force  acceleration in opposite direction i

deceleration until v = 0
77, Wall 7

Figure 1.3: Agent gets stopped and forced back by accelera-
tion of wall force.

The difficult calibration of a model is another important issue. This
type of models find their limit, if a unique set of parameters for various
situations is desired. Best results are achieved with a special calibrated
set of parameters for different situations. The change of parameter sets is
problematic, if we want to make extensive use of parallel solvers. In terms
of ergonomics, a constant set would be more user-friendly.

Velocity-based models, which often lead to first order ODEs, make up
an important subgroup. These models change the agent’s velocity directly
and thus show much better trajectories in terms of oscillation. The Wall-
Avoid-Model of this thesis, is partly derived from the GNM [7], a velocity-
based model. The GNM intends to overcome shortcomings of both groups,
oscillation (SFM) and the difficult mathematical treatment of rule-based
Models, yet have the positive characteristics remain.

A major step towards this goal is the use of a navigation field, given
by the solution to the Eikonal equation. This approach, introduced by

Hartmann [9], provides routing and navigation information. In the GNM,



Dietrich divides the navigation into two components. A static and a dynamic
navigation vector are described. The static navigation field comprehends the
geometry, the dynamic navigation field integrates pedestrians and mobile
obstacles. It is clear, that the dynamic navigation field must be computed
for every timestep during the simulation.

Besides oscillation and calibration, there is a third issue, on which we
will focus in the next chapter: Overlapping. It describes a situation, where
an agent’s position is invalid either because the agent’s simulated presence
overlapps with another agent or because it overlapps with a wall or even
an obstacle (see figures 1.4, 1.5). Once an agent is fully clipped through a

wallsurface, faulty trajectories are most certain.

Pedestrians: ’ :
A

Figure 1.4: Agents get pushed into obstacles by the large
amount of other agents. The agents’ colorcode refers to their
walking speed. (Red := Stopping; Simulated with a force-
based model)

[ J
of
PedesTrions:‘213 AS'

Figure 1.5: Agents remain inside obstacle. (Simulated with
force-based model)

These issues highlight the need to develop pedestrian models and search
for yet another model, which might overcome some of the shortcomings and

can produce as good results as existing models already provide.



1.2 JuPedSim

While designing a new pedestrian model, implementation, testing, calibrat-
ing, verification and validation are processes to go through. Next to imple-
menting the model itself, researchers need to calibrate model parameters,
run tests, analyze the simulation results and compare them to empirical data
as part of the validation process. This chain of steps requires an infrastruc-

ture to

e configure simulation inputs, like geometry data, number of agents,

agent parameter and of course model parameter in a defined format,
e run a simulation, which produces the trajectories in a defined format,
e verify the model during implementation phase to the specification,
e visualize the simulation results,

e analyze the results and measure metrices like density, flow and compare

these to empirical data to validate the model.

If there are no tools for the various tasks at hand, a great amount of time
is spent on programming the needed infrastructure. To shift the effort,
which goes into the programming of the environment, to the core task, the
development of pedestrian models, a framework has been created.

The Jiilich Pedestrian Simulator (JuPedSim) is an extensible software
framework for simulating and analyzing pedestrians’ motion, which sup-
ports the user in all of the above phases. It consists of three major modules,
a simulation module (JPScore), a visualization module (JPSvis) and a re-
porting module (JPSreport). The input- and output files are XML based
and provide a readable, ergonomic file format. Through JuPedSim, we can
focus on our core task, the model formulation and its implementation. We
are provided with a ready to use framework, so we can then directly for-
mulate our simulation configurations for the test and calibration process.
Results can be visualized with its module JPSvis. JuPedSim is platform

independent, released under the LGPL license and written in C++.



2 Modelling

2.1 Motivation

In many of second order models, agents breach wall surfaces and get stuck
inside of walls. This undesired phenomenon highlights the challenge in cali-
brating forces and parameters of existing models, so that agents show valid
natural behavior while not getting overlapping in extreme situations. Espe-
cially in situations of high crowd density, e.g. when facing bottlenecks, over-
lapping can occur.It leads to inaccuracies in measurements, e.g. in counting
and flow calculation.

In the SFM, the walls do have a repulsive force pointing perpendicular
to the wall surface. These forces need to be calibrated to work as intended.

Smaller forces might not be strong enough to avoid overlapping with the
wall if an agent is in between a wall on one side and many other agents on
the other side (see fig. 2.1). The agents on the other side affect that one
agent, forcing him towards the wall, while the wall itself acts on the agent in
the opposite direction. The resulting force could still point in the direction

of the wall, leading to overlapping.

fa ent
; ’ repelling forces ;
@ result

T fu‘nl/
72 Wl 7

Figure 2.1: Triangle of forces. Small wall-force in red. Sum
of all forces in blue.

If the repulsive wallforces are too strong, pedestrians will not use the

space close to a wall, even if the domain is very crowded (see fig. 2.2).
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fa ent
’ repelling forces

f result

725 7

Figure 2.2: Triangle of forces. Large wallforce in green. Sum
of all forces in blue.

It is a difficult task, to find a set of parameters, that work as desired
in a broad set of situations and geometries. To overcome the problems
in calibrating and oscillation, we will define a model based on a first-order
ODE. The behavior of agents close to a wall will be the focus. Any mechanic,
that will always keep agents away from walls, will not be sufficient. Agents
shall keep from walls, only if they have the freedom to do so and are not
hindered by surrounding agents. But in situations, where the density is
high, agents shall make use of all the available space, even if they get close

to walls.

A prototype situation for this scenario to be investigated are the bottleneck-
geometries. Here we see a rise in density in front of the point of constriction.
After this description of the model behavior, the components of the model

will be introduced.

The mechanic to supply an agent with the direction, in which to go,
will be a floorfield. It is a field of scalars, that correlates the position in
the geometry with a value indicating the time-cost to reach the destination

from that position, the Fikonal Equation.

11



2.2 Eikonal Equation

The “Eikonal equation” in a domain 2, subset of R",

Ve@)| = F@), Teq

s.t. clao = 0,

yields the “time-cost” ¢(Z) in a spacial domain, provided a target region
within the domain as input as well as a slownessfield F(Z). A valid inter-
pretation of “time-cost”-isometrics is to picture a wavefront at a given time
t, originating in the target region (¢ = 0) and propagating throughout the
spacial domain ) with the given speed v = % while flowing around any

obstacles (see figure 2.3).

0 wan
-1823

—11.93

-»5617

—0.6914

Figure 2.3: Isometrics of “time-cost”.

Given a discretization of the domain €2 and the target region 0f2, the so-
lution to the Eikonal equation can be approached by using the Fast Marching
algorithm [18] (see appendix 5.1). The algorithm provides a first order ap-
proximation, yet sufficient for our cause. Computingtime of Fast Marching
is independent® of the complexity of obstacles and walls.

The negative gradient —Vc¢ of the time-cost field is a useful tool in the
routing of agents to the target region used as one of the algorithm’s inputs.
The resulting trajectories show the shortest path to the destination region.

We will refer to the result of the Fast Marching Algorithm as “floorfield”.

5Fast Marching completion time depends mainly on the length of the wavefronts. If the
geometry leads to small lengths, as in geometries with large amounts of narrow corridors,
completion time decreases.

12



To successfully use these floorfields, we discuss and analyze a modification,

which gives us smooth trajectories, as proposed in [14].

2.3 Safe Navigation using the Floorfield

When using the plain approximation to the Eikonal Solution, agents an-
ticipate a non smooth pathway that leads very close to walls (see white
trajectories in figure 2.7). In many models for pedestrian dynamics, agents,
which are very close to walls or obstacles, could overlap with them in rare
occasions. They might leave the valid domain and find themselves captured
inside walls or obstacles. Yet in reality, we can observe, pedestrians avoiding

walls and obstacles with a certain distance.

Therefore, it is desirable to define a modified quality of an optimal route,
which accounts for a minimal arrival time and a safe pathway. Safe in respect
to avoiding the vicinity of walls and obstacles, whenever possible. It is clear,
that altering the floorfield will result in different trajectories. They are no

longer the shortest pathways.

In high density situations, the agent shall use all available space. This
will be achieved by the way we integrate the floorfield into the velocity
vector. If a space is very crowded (high density), then agents should make

use of the given space even if that means getting close to walls.

How can an agent “avoid” the close vicinity of any wall or obstacle via

an enhanced floorfield?

13



2.4 Distances-Field

.—20 104.0

102.0

100.0

Figure 2.4: Distances field d(¥) of a bottleneck geometry

Having above question in mind, we first need to introduce and understand
the Distances field, a function d living on the spacial domain 2, that holds
information on how distant the closest wall is. This function will prove
useful when altering the one floorfield, we will use for routing. To avoid
confusion, let it be emphasized, that this distances field will be used in two

different parts of the model. It is used to:
1. create a Direction-to-Wall Field (vector field) and

2. to create a slowness field (scalar field) to initialize the Fast Marching

algorithm of the Navigation Field.

The Direction-to-Wall Field is a normalized vector field. FEach vector
has unit length. The orientation is gained by the negative gradient to the
Distances Field. This way, every given vector at Z directs to the closest wall

of that given grid-point Z.

The function value d(Z) will be used to create a slowness field on the
discrete grid. This slowness field F' holds the value, which determines, how
slow the 2-D wave will propagate over the gridpoint in the final navigation
field. We create a band around walls with the width w. Only within this
band, the wavefront of the Eikonal equation is slowed down. Points, that are

within a distance of the w-band to a wall, have a corresponding low speed

14



create distance field
d

Y

create slowness field
F

Y

create navigation floor-field
c
Y Y
( 0
create vector field create vector field
\V4 =
(Do = drr (-1)vd
. J

Figure 2.5: Usage of the Distances Field in both vector fields

value v = + (see figure 2.6). Routes within the w-band will take more time

0.4 08 1

Figure 2.6: Relation of wave propagation speed v = F~! and
distances field for different values of w.

per gridpoint and be less optimal in a sense, that combines travel distances
and wall avoidance. We will refer to the value ¢(Z) as the time-cost value

(cost in short). The effect of this enhancement is seen in figure 2.7.

15



5.62

0.621

Figure 2.7: Isolines of a floorfield (above) compared to isometrics of the
enhanced floorfield (below). Sample trajectories in white.

The vectors of the resulting navigation field close to walls are pointing
away from the wall. The effect is best shown by plotting two sample trajec-
tories in both navigation fields. In figure 2.7 above, the agents are routed
alongside of walls, whereas below, they avoid walls even if starting close to

a wall.

2.5 Wall-Avoid Model

The Wall-Avoid model is velocity-based, using

Oxr = 0t - v(t).

The (Euler)-discretization shall be

Az = At - ’U(ti),

16



where v(t;) implements the core of the model, aiming for the avoidance
of faulty interaction of pedestrians and walls while maintaining the pos-
itive characteristics of reproducing pedestrian crowd behavior (e.g. lane-
formation).

There are three mechanics used in the model to avoid “overlapping” in

the vicinity of walls:

1. The routing of pedestrians makes use of the Eikonal equation, com-
puted with an inhomogeneous slowness field, F(x), whose resulting

floorfield” favors keeping a distance to obstacles, walls and corners.

2. In a slowdown-band the angle between an agent’s moving direction
and the wallsurface’s perpendicular affects the moving speed if and
only if the agent’s moving vector includes a component geared towards
the wall. This is achieved by using the scalar product of the moving

direction and the wallsurface’s perpendicular.

3. If an agent’s distance to a wall drops below a threshold «., it is redi-
rected to move parallel to the wall if and only if the agent’s moving

vector includes a component geared towards the wall.

In order to keep the model simple, repulsive wall forces as seen in Social
Force Models are omitted. An analogy to repulsive pedestrian forces though
is used to keep agents from colliding with each other. The model differs
from SFMs, as in SFMs, other agents repulsive forces are transformed into
acceleration vectors and from there into a velocity component, which is part
of the agent’s velocity. We have already seen, that this induces oscillations.
In this model though, repulsive influences are not treated as Newton me-
chanics teaches us, but are only used to factor the repulsive pedestrian effect
into a direction component. The speed on the other hand is effected by the
other agents only to a certain degree. To show this in the formulation of the
model, we used 7 to describe repulsive influences in order to avoid mistaking

these components for forces.

"see chapter Eikonal Equation, Safe Navigation using the Floorfield
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Table 2.1: Parameters used:

parameter value description
threshold for reduced
.0, 1.
w 0.0, 1.6] propagation speed (Eikonal)
N 0.6 threshold for wall distance,
s ' agents get slowed down if closer
N 0.3 threshold for wall distance,
" ' agents get redirected if closer
weight for linear combination of
« 0.8 . .
preceding and current unit speed vector
a 15 asymptotic value of Gompertz function
(agent to agent influence)
cut off radius of influence
b 0.25 .
(Gompertz function)
b 3 steepness of Gompertz function
Symbols:

e 7 denotes the influence vector among agents. The correlation of dis-
tance and influence is the Gompertz function f(z) = a-e ¢ “". The
function is smooth and adjustable in its asymptotic value (a), range
of influence (b) and steepness, which we can interpret as the elastic
modulus of two enclosing agents(c). Influence only applies to agents

within a view angle 8 < 100° of the current agent.

Uj
] <
fj —fl' ' N

Figure 2.8: Influence taken into account only if agent is catch-
ing up to agent in his view. Here, agent j is in view, but ¢ is
not catching up. (v > 90°)

e i denotes the unit speed vector. At any time, we store the calculated

orientation in this vector. It’s length is always < 1wunit. We call it

18



unit speed vector, as in most cases, it is the velocity vector with the
speed of 1 m/s. We multiply it with the agent’s desired speed value to

get the velocity vector of the current agent at the current timestep.
e 7 denotes the position vector of an agent in R2.

e vg denotes the agent’s desired speed.

Modul Parameter:

e o denotes the weight of the unit speed vector of the previous timestep.

(1 — «) is the weight of the current unit speed vector. (here a = 0.8.)

e «; is the width of the slow down band. Any agent, that is closer to

a wall than o will be slowed.

e o, is the width of the redirection band. Any agent within will be

redirected to move parallel to the wall.

e w is the wall avoid distance. It describes the bandwidth around
walls, in which the navigation wavefront is slowed down. (see figure

2.6)

e a,b,c are parameters of the Gompertz function and can be set in

the configuration file of a simulation.

Functions:

Let © be the discrete set of gridpoints in the bounded domain, which holds
the geometry of the simulation, a subset of R%. The following functions will

be used in the model formulation and shall be introduced:
d:Q>7— d(¥) €R, Q CR?

assigns to each gridpoint in €2 the distance to the closest wall. It will be used

to choose, in which mode the movement vector candidate will be altered.

19



(Modes are: regular, slowdown and redirect)
P:R?x Q> (i, %) — P(i, ) € R?

describes the orthogonal projection of a given orientation # onto the closest

wall of Z. It yields an orientation parallel to that wall.
Uff: Q>578 — uff(f) = Uff S R2|||.||2:1

is the (normalized) negative gradient of the navigation floorfield at position
Z. This vector describes the direction of the negative gradient only and
always has unit length. It is used to contribute directly to an agent’s unit
velocity vector.

g:R?>i — g(@l) € R2|H.||2§1

limits the length of any input vector @ to unit length. If |||, < 1, then g is
the identity of .

n n
N lrepi: ORZ D (@1, in) — D irepy € B2
i=1 7=t i=1
is adding the distance-dependant® repelling influence of neighboring agents
within a close vicinity. This sum is analog to the SFM model, yet the
resulting influence is directly taken and not converted to an acceleration nor
to a velocity. The character i is a hint to being an influence vector, not to

being a velocity.

Velocity vector vy - Uy res in timestep n:

8The correlation of distance and influence is the Gompertz function f(z) = a-e™*¢ ",

The function is smooth and adjustable in scale, range of influence and steepness by the
parameter a,b,c.

20



n

Uppre = Q- 'L_L‘nfl,res +(1-a)-g g(ﬁff) + g(z ;T‘ep,j)
j=1

(1 — (tppre, —Vd)) P(tnpre) if d(@) <o) A
<un pres d> > 0)

J’I’LJCS = (1 - <'L_[n,pre, —Vd>) ﬁy)ﬂpr@ if Oér < d( ) < Oés) /\

(
(
(
(

<Un pres d> > 0)

Unpre €lse;

AZ, = At-vg - Uppres-
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Figure 2.9: Calculation of pedestrian movement during one timestep

What might seem curious at first, is the fact, that both, the navigation

field @s¢ and the sum of pedestrian influences ) me, are restricted to the

length of one unit by function g. Then their sum in turn is restricted again.
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This obviously breaks the principle of superposition of forces. We cannot
talk about a force-based model here and loose the analogy to Newton’s
second law the first time applying g on the sum of influences 3 ;Tep’j. The
resulting vector indicates a new orientation and a slow-down mechanic, as
the vector can be of length < 1 unit.

The sum of the navigation field (static) and the accumulated pedestrian
forces (dynamic) are restricted by g and then weighted by (1 —«), the speed
vector of the last timestep gets weighted by «. This is done to reduce
flickering” of agents. By using the unit speed vector of the preceding time-
step, we introduce a discrete approximation of dv = f(t,z,v(x,t)). It is
important to limit that effect. Otherwise we end up with a second-order
model. The weighted sum limits the change of orientation and thus an
agent could oscillate between two opposing walls. If oscillation should occur
in any case, the weight should be shifted away from the preceding timestep.
This way, the effect of second-order ODEs gets diminished.

In the next step, we process i, pre. The distance to the next wall is
checked and if the agent is closer than s to any wall, we calculate the
scalar product (i pre, —VcZ) to evaluate, if there is a component towards

the closest wall. In this case, the agent is slowed down (see figure 2.10). If

\ﬁn\.prc
2 7

Figure 2.10: Slowdown: Reduction of the unit speed vector
to avoid clipping

the agent is already very close to the wall, (d < «,), the velocity component

9We call the change in direction back and forth in every timestep flickering. We want
to shortly address a second alternative approach. If one is willing to accept flickering
agents with fast changing orientations, one could omit the velocity vector of the timestep
(n — 1) and postprocess the trajectories. As we only get positions at discrete timesteps,
one could easily create a smooth trajectory by using B-splines.
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towards the wall gets neglected. Thus, the agent gets directed to move
parallel to the wall (see figure 2.11). «a, and «, define the widths of two
bands, in which we alter the vector i, pr. (pre for prediction) to get the
final unit speed vector iy, res (res for resulting). The bands are arranged as

pictured in figure 2.12.

-
Un,pre

72, Wl 7
Figure 2.11: Redirection of the unit speed vector to avoid

clipping

o
redirect (o7% L
Y

72 7,

Figure 2.12: Slowdown and redirection band alongside a wall.

24



3 Verification and Validation

In this chapter, we want to describe applicable tests to the Wall-Avoid
model. First, we validate basic fundamentals any pedestrian model should
pass. Further, it is verified, that we see no overlapping and that the crowd
shows typical phenomena, like lane-formation [20]. Following our set of tests,
we will then validate the Wall-Avoid model to produce the pedestrian flow in
bottleneck experiments, corresponding to empirical data. This verification is
widely considered the most important criterion to validate simulation results
[19]. We will further compare the trajectories with a different model, one

using automated triangulation to assist routing.

3.1 Basic Tests

The validation of a model is a complex task and makes up a separate re-
search field. Researchers in the field of Civil Engineering are working on
various approaches on how to validate a model. The research group, CST -
Pedestrian Dynamics and Traffic Simulation, is developing a set of testcases
any serious model should aim to pass. Tests include the behavior of a single
moving agent passing static objects like a dummy agent or an obstacle.
The Wall-Avoid model, implemented in its current state in the simulation
suit JuPedSim[1], passed these applicable tests and it was shown, that the
basic mechanics of the routing are working as specified. Yet to complete
validation of the model on a more complex level, the floorfield needs to
support multiple destinations. This would enable test with bidirectional

flows and more.

3.1.1 Test A

In the first test, we see a corridor, a moving agent and a dummy agent
positioned in the line of sight to the destination (figure 3.1). This test is
passed, if the moving agent will pass the dummy agent without overlapping

or tunneling.
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v=0m/s

4m

10 m

Figure 3.1: Testcase 1: passing a static dummy agent.

Figure 3.2: Simulation Result: Agent is passing the dummy
agent.

As figure 3.2 shows, the agent passed the dummy agent. As the dummy
agent is not defined in the geometry, it is not considered in the calculation
of the floorfield. The composition of floorfield and agent-to-agent influence
leads to this trajectory. The moving agent is not anticipating the dummy

agent.

3.1.2 Test B

In the second test (see figure 3.3), the corridor is narrowed down, so that
there is not enough space to pass the static agent on either side. The test

is passed, if the moving agent will be unable to pass the dummy agent.
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v=0m/s

—0.8 m—

10 m

Figure 3.3: Testcase 2: no passing of a static dummy agent.

Figure 3.4: Simulation Result: Agent stops before the
dummy. Red color indicates v = 0.

Simulation Result (see figure 3.4) show, that the test is passed. The

agent stops as specified.

3.1.3 Test C

The last of the basic tests describes a situation as depicted in figure 3.5.
The destination of the agent is out of sight. The test is passed, if the

agent can reach the exit on the left side. In the plot of the simulation

4m

v=1m/s

10 m

Figure 3.5: Testcase 3: reaching a goal out of sight.

result (figure 3.6) we see, that the agent can anticipate the static object
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Figure 3.6: Simulation Result: Navigation Field and trajec-
tory of the agent.

in advance. The smooth trajectory shows the capability of the enhanced

floorfield to anticipate obstacles in advance.

3.2 Variation of the Parameter

The following test analyzes the wall-avoid-distance w and proves the effective
treatment of agent-wall interaction. We simulate bottleneck experiments
with bottleneck widths 0.8 m < w < 2.5m. Each geometry is tested with
w = 0.0, which results in the plain floorfield and with w > 0.0, which results
in enhanced floorfields. In figure 3.8, we see snapshots of the test simulation.
Without the enhanced floorfield, many agents walk alongside the walls, both
in the entering-section before the bottleneck and within the bottleneck. At
the time of the snapshot, agents already crowd before the bottleneck and use
all available space. This usage of available space is seen in the simulation
with w > 0 also. Right after the bottleneck, agents walk right towards the
exit when using the plain floorfield (above). The other simulations (middle
and below) show the effect, that agents will avoid the vicinity of walls, if
they are not hindered and pedestrian density is low. This wall avoidance is
also seen in the first phase of the experiments. The first agents entering the
bottleneck have the possibility to walk to the middle of the geometry. The

more we increase w, the more we can see the effect of a spearhead (see figure

28



Pedestrians: 131 Time: 15 Sec

Pedestrians: 130  Time: 22 Sec

Pedestrians: 130  Time: 24 Sec
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'..00000000 .’—\—
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Figure 3.7: Bottleneck Experiment:
above: width: 2m, w =0.0m

middle: width: 2m, w =0.8m
below: width: 2m, w =1.6m

). We get a better look at this effect, when plotting all trajectories as seen
in figure 3.9. The effect of the parameter w can be seen. The bottleneck
reduces the pedestrian speed in front of it. If w is chosen to high, the agents
avoid the walls after the bottleneck. Seen in the trajectories narrowing down

even further.

The reduction of the flow can be seen in figure 3.10, as w decreases. After
the bottleneck, the pedestrians can accelerate again. Figure 3.10 shows the
results of experiments, conducted by Kretz in 2006 and Seyfried in 2009.

The comparison also validates the model to yield a fundamental diagram like

29



Pedestrians: 179 Time: 4 Sec;

Rl S USRS
Ogoo00000
00000
‘.ooooo

o _o090°

.. 00 Y
.. [ N ]

(YX X X

Figure 3.8: Bottleneck Experiment:

above: width: 2m, w =0.0m
middle: width: 2m, w =0.8m
below: width: 2m, w =1.6m

seen in real world experiments: The calculated flow through the bottleneck

shall match the empirical data. It can be seen, that the more the agents will

strive to avoid obstacles and walls, the lesser the flow will be (see 3.10).

The simulation result also shown, that without the enhancement of the

floorfield, few agents do not pass the bottleneck, but get caught inside of

walls (see figure 3.11).
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Figure 3.9: Bottleneck Experiment:
above: width: 2m, w =0.0m
middle: width: 2m, w =0.8m
below: width: 2m, w =1.6m

3.3 Compare Trajectories to an existing automated model

The title of this section is surely forcing some questions. What does the au-
thor mean by automated models. In the context of this thesis, we distinguish
among models that need manual alteration of a specified geometry input,
e.g. domain decomposition, for the router to function and models that only
need the geometry data (see Abstract). If we only allow models of the later,
we can transform models of the first class to an automated model by using
a form of automated decompositor. In the following, a model that requires
the line of sight for an agent to reach an intermediate goal, the manually

helplines get replaced by a triangulation. So now we can compare two mod-
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Figure 3.10: Diagram with empiric data and simulation re-
sults of various Bottleneck widths.
Data from: 2006 EG, 2006 Kretz, 2009 Seyfried.

els of the same class, and qualify the trajectories of both simulations. (see
fig. 3.12) It is seen, that the trajectories of the new Wall-Avoid model have
an organic look. They don’t have the zig-zag look, seen in the left snapshot
(figure 3.12). It is hard to quantify that organic effect, so the qualitative

comparison shall suffice.

3.4 Cost of a “full” preprocessing step

Close to all time of the needed computation spent on the enhanced floorfield,
the prohibition of overlapping, is spent in a preprocessing step before the
actual simulation starts and therefore does not effect the real-time factor. In
this Wall-Avoid Model, the preprocessing is increased compared to a GNM.
Where Dietrich uses the Eikonal solution once (mollifiers not considered),

the Wall-Avoid Model uses two runs through the Fast Marching algorithm
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Figure 3.11: Agents lost by overlapping with plain floorfield.

Pedestrians: 47  Time: 62 Sec Pedestrians: 1228 . “Time!34'Sec

Figure 3.12: Comparison between trajectories: Routing with helplines
through triangulation (left) to routing with navigation field (right).

(FMA). In this chapter we want to elaborate on the doubled effort we spend.

The granularity of the rectangular grid governs the cost of the FMA1.
For pedestrian navigation, we chose a point-to-point distance of neighboring

gridpoints of 0.0625m. A geometry spanning 100 x 100 m? can be processed

10Fast-Marching
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in 37 seconds.!! Including storing all floorfields and gradient fields, process-

ing time rises to 65 seconds.

The Fast Marching algorithm is that fast, that it basically can be ne-
glected when rating the performance. A prequel Fast Marching run does
not change that verdict. The usage of the Direction-to-Wall Field in the
model shows no more overlapping and seems easily worth the cost. During
runtime, using the floorfield or the Distance-to-Wall field means reading a

vector and performing up to 2 scalar products.

To show the performance of the Wall-Avoid Model, we started a simu-
lation in a complex geometry with more than 3000 agents (see figure 3.13).
Compared to other models available in JuPedSim [1], we could not see any
significant performance difference. The trajectories improved and look much
more natural. This was achieved without the need to manually adding de-

composing helplines or intermediate navigation goals.

"' Measured on a single core of a Intel© Core” i7-3610QM CPU @ 2.30GHz
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" Pedestrians: 2918 Time: 5 Sec

Figure 3.13: Simulation of a complex geometry with multiple exits and 3000
agents
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4 Conclusion and Outlook

4.1 Conclusion

In this thesis, an altered usage of an enhanced floor field was shown, inte-
grated in a suitable new Wall-Avoid Model. The wall-avoid distance pa-
rameter was analyzed and shown to be able to show good convergence to
empirical data. During the course of the work process, it became clear how
versatile and powerful floorfields can be. Not only in the current state,
they can provide valuable assistance to pedestrian models, but they can be
further developed to fit into many more contexts.

The parameters of the model are calibrated as follows: The wall-avoidance
parameter w = 0.8 m shows best convergence with empirical data as well as
the most natural behavior, when visualizing the simulation results. The
bandwidth of the slowdown-band is chosen to be ay = 0.6 m, the redirection

bandwidth is o, = 0.6 m.

4.2 Floorfield
4.2.1 Multiple Goals

The floorfield is a useful tool in routing of pedestrians through any geom-
etry. To unfold its full power, one can advance to calculate a floorfield for
each of many atomic goals'?>. The combination of many floorfields, each
corresponding to an atomic goal, can easily be managed by selecting the
direction vector of the one floorfield, that provides the minimal time-cost of
an active set of floorfields evaluated at the gridpoint of the current agent’s
position. Dynamic world events in a simulation could alter the set of active
floorfields. This way, models can implement navigation in a dynamically
changing world. It can be a tool in a simulation suit, which has agents
change their destination during runtime. This would be realized by simply

changing the active set to the floorfields corresponding to the new situation.

12 An atomic goal would be a single exit door, whereas a destination could consists of a
set of doors/exits.
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4.2.2 Multiple Floors

In the current state, the floorfield provides time-cost on a discrete grid, a
rectangular grid with equidistant spacing in each dimension. The gridpoints
are stored in a one dimensional array by the row-major order. In an ar-
rangement like this, it is easy to formulate 4-neighboring'® relations. These
values are easily accessed, if you are provided the stride value, namely how
much gridpoints make up the length of both dimensions in a 2-D world. The
Fast Marching algorithm needs the time-cost values of the 4-neighborhood.
This will change, if you need to simulate in a building with multiple floors,
which are connected via stairs. We need to introduce a new mechanic, which
can be treated equally handy inside each floor. Any position, projected onto
the x-y plane, may not be unique anymore. On the other hand, it would
be a waste of memory, if a third dimension would be introduced® in that
way, to represent the hull cube circumscribing a building. One must find a
solution, which describes the geometry of the rooms in a memory efficient

way and yet be able to comfortably access the 4-neighbors’ time-cost value.

13Gridpoints north, south, east and west to the current are called 4-neighbors.
4 As we are interested in points representing the floor of a room, all the volume (air)
above would be not used.
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5 Appendices

5.1 Fast Marching Algorithm

User FloorfieldViaFM Trial

Create and Init(...)

».

Create and Init(...)

while narrowband not empty)

remove minimum from narrowband

add minimum to known set
é:::
calc cost of minimum’s unknown neighs

__
add unknown neighbors to narrowband

)
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5.2 Gradient Model using a Floorfield

User | GradientModel | M| FloorfieldViaFM

Create and Init(...)
Creat¢ and Init(...)

Create and Init(...)

run simulatiml)

for each agent
e getTarget()

getDirectionAt()

return movDir

return movDir

getDir2Wall()

getDir2Wall()
return dir2Wall

return dir2Wall

getDistance2Wall()

getDistance2Wall()

return distance2Wall

return distance2Wall
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