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Abstract. In the present work, three different techniques to

separate ice-nucleating particles (INPs) as well as ice particle

residuals (IPRs) from non-ice-active particles are compared.

The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual

Impactor (Ice-CVI) sample ice particles from mixed-phase

clouds and allow after evaporation in the instrument for the

analysis of the residuals. The Fast Ice Nucleus Chamber

(FINCH) coupled with the Ice Nuclei Pumped Counterflow

Virtual Impactor (IN-PCVI) provides ice-activating condi-

tions to aerosol particles and extracts the activated particles

for analysis. The instruments were run during a joint field

campaign which took place in January and February 2013

at the High Alpine Research Station Jungfraujoch (Switzer-

land). INPs and IPRs were analyzed offline by scanning elec-

tron microscopy and energy-dispersive X-ray microanaly-

sis to determine their size, chemical composition and mix-

ing state. Online analysis of the size and chemical compo-

sition of INP activated in FINCH was performed by laser

ablation mass spectrometry. With all three INP/IPR separa-

tion techniques high abundances (median 20–70 %) of in-

strumental contamination artifacts were observed (ISI: Si-O

spheres, probably calibration aerosol; Ice-CVI: Al-O parti-

cles; FINCH+ IN-PCVI: steel particles). After removal of

the instrumental contamination particles, silicates, Ca-rich

particles, carbonaceous material and metal oxides were the

major INP/IPR particle types obtained by all three tech-

niques. In addition, considerable amounts (median abun-

dance mostly a few percent) of soluble material (e.g., sea

salt, sulfates) were observed. As these soluble particles are

often not expected to act as INP/IPR, we consider them as

potential measurement artifacts. Minor types of INP/IPR in-

clude soot and Pb-bearing particles. The Pb-bearing particles

are mainly present as an internal mixture with other parti-

cle types. Most samples showed a maximum of the INP/IPR

size distribution at 200–400 nm in geometric diameter. In a

few cases, a second supermicron maximum was identified.
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Soot/carbonaceous material and metal oxides were present

mainly in the sub-micrometer range. Silicates and Ca-rich

particles were mainly found with diameters above 1 µm (us-

ing ISI and FINCH), in contrast to the Ice-CVI which also

sampled many submicron particles of both groups. Due to

changing meteorological conditions, the INP/IPR composi-

tion was highly variable if different samples were compared.

Thus, the observed discrepancies between the different sep-

aration techniques may partly result from the non-parallel

sampling. The differences of the particle group relative num-

ber abundance as well as the mixing state of INP/IPR clearly

demonstrate the need of further studies to better understand

the influence of the separation techniques on the INP/IPR

chemical composition. Also, it must be concluded that the

abundance of contamination artifacts in the separated INP

and IPR is generally large and should be corrected for, em-

phasizing the need for the accompanying chemical measure-

ments. Thus, further work is needed to allow for routine op-

eration of the three separation techniques investigated.

1 Introduction

The impact of clouds – and in particular cloud–aerosol inter-

actions – on earth’s radiation balance is still one of the most

uncertain aspects in our understanding of the climate sys-

tem (Flato et al., 2013). The understanding of tropospheric

cloud ice formation processes is crucial for predicting pre-

cipitation and cloud radiative properties. Aerosol–cloud in-

teractions play a key role in determining cloud properties like

phase, size distribution and colloidal stability of the cloud el-

ements, as well as the lifetime, dimensions and precipitating

efficiency of a cloud. Though there have been advances dur-

ing the last decades, in particular for aerosol–cloud interac-

tions, the level of scientific understanding is still classified

as “very low” to “low” (Flato et al., 2013). A considerable

uncertainty of the response of aerosol and cloud processes to

changes in aerosol properties still arises from the lack of fun-

damental understanding of the interaction of aerosol particles

with the cloud ice phase (Lohmann and Feichter, 2005). Al-

though large attention was given to field studies in the last

decade (e.g., Richardson et al., 2007; Prenni et al., 2009a,

c; Santachiara et al., 2010; Ardon-Dryer et al., 2011; Conen

et al., 2012; Ardon-Dryer and Levin, 2014), these measure-

ments cover only limited geographic regions as well as a lim-

ited time. Thus, additional field work is certainly needed.

Many ice nucleation experiments were performed under

laboratory conditions (e.g., Hoose and Möhler, 2012, and ref-

erences therein), and provided valuable knowledge on ice-

nucleating particle (INP) properties of pure components and

artificially generated mixtures. Mineral dust and biological

particles are regarded in general as efficient INP, while ex-

periments disagreed on the INP abilities of soot and organ-

ics (Hoose and Möhler, 2012). Sea salt and sulfate are often

not considered as INP (Pruppacher and Klett, 1997). How-

ever, this conclusion is challenged by several authors (Abbatt

et al., 2006; Schill and Tolbert, 2014). Furthermore, it was

shown recently in laboratory work for NaCl particles that a

partial efflorescence under suitable conditions might lead to

ice activation (Wise et al., 2012). The situation is even more

complex in the ambient atmosphere, where particles are of-

ten present as a complex mixture of different compounds.

In addition, the particles may be modified by heterogeneous

processes, which may change their ice nucleation ability. In

laboratory experiments, these effects are currently addressed

for single substances (Hoose and Möhler, 2012; Wex et al.,

2014), but the level of atmospheric mixing complexity is not

yet realized. Though mixing state was regarded by previous

investigations (Knopf et al., 2010, 2014; Ebert et al., 2011;

Hiranuma et al., 2013), the data basis is still sparse and fur-

ther field work is needed.

During the last decade, several techniques emerged which

are capable of distinguishing INPs or ice particle residuals

(IPRs) for subsequent chemical analysis. Particles are usu-

ally exposed to thermodynamic conditions favoring ice nu-

cleation, either in the airborne state or on a substrate. Ex-

amples for these techniques are the Fast Ice Nucleus Cham-

ber (FINCH) (Bundke et al., 2008) in combination with

the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-

PCVI) (Schenk et al., 2014), the Continuous Flow Diffusion

Chamber (CFDC) in combination with the laboratory coun-

terflow virtual impactor (LCVI) (Cziczo et al., 2003) and

the Frankfurt Ice Nuclei Deposition Freezing Experiment

(FRIDGE) (Bundke et al., 2008; Klein et al., 2010). While

in FINCH+ IN-PCVI and CFDC+LCVI the particles are

kept airborne, ice nucleation occurs on an ice-inert substrate

in FRIDGE. In contrast, analysis of IPR relies on the nat-

ural selection of INP by a cloud. While for cirrus clouds all

cloud elements can be investigated (Cziczo and Froyd, 2014),

for mixed-phase clouds the ice particles need to be sepa-

rated from droplets. Ice particle separation can be accom-

plished with different techniques. In the Ice Selective Inlet

(ISI; Kupiszewski et al., 2014) droplets present in the sam-

pling flow are evaporated in an ice-saturated environment and

the remaining ice crystals are subsequently separated from

non-activated particles using a PCVI. Alternatively, cloud el-

ements can be impacted on a cooled surface collecting the

droplets while bouncing the ice particles for further analysis

(Ice Counterflow Virtual Impactor, Ice-CVI) (Mertes et al.,

2007).

In the present work, three state-of-the-art techniques for

INP/IPR sampling – ISI, Ice-CVI and FINCH+ IN-PCVI

– were operated in a joint field experiment to sample at-

mospheric mixed-phase clouds and characterize the sampled

INP/IPR with respect to their morphology, chemical com-

position, particle size and mixing state. The High Alpine

Research Station Jungfraujoch (Switzerland) was chosen as

field site for logistic reasons (easy access to a location with

frequent presence of mixed phase clouds). In addition, as
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Table 1. Techniques and operation principles used for ice-nucleating particle (INP) and ice particle residual (IPR) differentiation.

INP/IPR separating

technique

Principle of operation Mode of op-

eration

Ice nucle-

ation loca-

tion

Separated

particle

type

Freezing

mechanisms

Size fraction of

sampled ice

hydrometeors

Fast Ice Nucleus Cham-

ber (FINCH)+ Ice Nu-

clei pumped Counter-

flow Virtual Impactor

(IN-PCVI)

activation of INPs un-

der suitable thermo-

dynamic conditions,

separation of INPs by

inertia

in-cloud and

out of cloud,

continuous in

periods

instrument INP deposition,

condensation,

immersion

not applicable

Ice Counterflow

Virtual Impactor

(Ice-CVI)

removal of

supercooled droplets,

transmission of ice

particles

in-cloud,

continuous

atmosphere IPR deposition,

condensation,

immersion,

contact

5 µm < d < 20 µm

Ice Selective Inlet (ISI) use of

Bergeron–Findeisen

process to evaporate

supercooled droplets,

separation of ice

crystals by inertia

in-cloud,

continuous

atmosphere IPR deposition,

condensation,

immersion,

contact

4.9 µm < d < 20 µm

INPs and IPRs were investigated recently at this location in

a number of studies, a considerable data base is available

for comparison. In the previous work, enrichment of min-

eral dust (Kamphus et al., 2010; Chou et al., 2011; Ebert et

al., 2011), metal oxides (Ebert et al., 2011), Pb-containing

particles (Cziczo et al., 2009b; Ebert et al., 2011) and car-

bonaceous material/black carbon (Cozic et al., 2008; Ebert

et al., 2011) among INPs/IPRs were reported.

2 Experimental

In January/February 2013, a field campaign of INUIT

(Ice Nuclei Research Unit) was performed at the High

Alpine Research Station Jungfraujoch in Switzerland (JFJ;

3580 m a.s.l., 46.55◦ N, 7.98◦ E). IPRs were separated from

the interstitial aerosol and droplets by ISI and Ice-CVI. INPs

were sampled from the total aerosol by FINCH+ IN-PCVI

(Table 1). INPs/IPRs were either collected by impactors

and analyzed by scanning electron microscopy (SEM) and

energy-dispersive X-ray microanalysis (EDX) or analyzed

online by laser ablation mass spectrometry (LA-MS).

2.1 INP/IPR sampling

INPs and IPRs were sampled by three different techniques.

INPs were detected by the FINCH+ IN-PCVI (details of the

experimental setup are given in Bundke et al., 2008, and

Schenk et al., 2014). IPRs were collected via selective sam-

pling of small (< 20 µm aerodynamic diameter) ice crystals

with Ice-CVI and ISI. Subsequent heating of the sampled ice

crystals releases IPRs. The extracted IPRs were collected for

SEM-EDX with a two-stage impactor system. The setup con-

sisted of circular nozzles with 0.7 and 0.25 mm diameters op-

erated at a flow rate of 0.45 L min−1 (volume), leading to an

approximate 50 % cutoff efficiency for aerodynamic diam-

eters of 1 and 0.1 µm, respectively (for details on impactor

dimensions see Kandler et al., 2007). Transmission electron

microscopy grids (TEM grids type S162N9, Plano GmbH,

Wetzlar, Germany) and polished elemental boron embedded

in a conductive resin (for manufacturing see Choël et al.,

2005) were used as impaction substrates for all methods.

Both substrates provide a background signal with low inter-

ference with respect to the particle composition. While boron

substrates yield a better detection of carbon in the particles

and allow for larger particle numbers due to less substrate

damage, the TEM grids in principle provide the possibility

of being used in a TEM for phase analysis and easier detec-

tion of coatings.

2.1.1 Coupling of FINCH and IN-PCVI

FINCH+ IN-PCVI was operated in clouds as well as dur-

ing cloud-free periods. Aerosol particles and cloud elements

were sampled from the atmosphere by a total aerosol inlet

(Weingartner et al., 1999) with an aerosol flow of approx-

imately 2.25 L min−1. The aerosol was dried by heating to

evaporate the water of the hydrometeors. The dried aerosol

containing all interstitial particles and cloud element resid-

uals was then transported into FINCH, in which a supersat-

uration with respect to ice is achieved by mixing air flows

of different temperature and humidity. INPs are activated,

grow while flowing through the chamber, and are counted

by a purpose-built optical particle counter (OPC; for details

see Bundke et al., 2010). The OPC used in this instrument is

able to distinguish between supercooled water droplets and

ice crystals by analyzing the polarization ratio of the scat-
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tered circular polarized light (P44 / P11 ratio of the scattering

matrix; Hu et al., 2003). In addition, the auto-fluorescence

resulting from the excitation of the grown particles with UV

light is detected, which is an indication for biological particle

material.

The ice crystals are then separated by the PCVI from

the non-activated particles and from the small supercooled

droplets (Schenk et al., 2014). As the PCVI input flow must

be identical to the FINCH output flow, the counterflow must

be continuously adjusted to achieve this requirement. This

adjustment leads to variable cutoff diameters between 4.5

and 8 µm. Finally, the sampled FINCH ice particles evapo-

rate while they are transported in a dry particle-free air.

The freezing temperature of FINCH during the campaign

was slightly varied around −22.1 ◦C, which matched for

most of the samples the outside air temperature with less than

5 ◦C difference. The saturation ratio with respect to ice was

varied between 1.14 and 1.80 with a mean of 1.54 for all sam-

ples. Details on the sampling conditions are given in Table S1

in the Supplement.

2.1.2 Ice-CVI

From the mixed-phase clouds prevailing at JFJ, IPRs were

collected by the Ice-CVI (Mertes et al., 2007). It consists of

a series of different modules that allow sampling of small ice

particles by a simultaneous pre-segregation of all other cloud

constituents. The vertical, omnidirectional inlet already re-

duces the sampling of ice crystals larger than 50 µm, includ-

ing precipitating or windblown ice particles. A virtual im-

pactor downstream of the inlet horn limits the upper size of

sampled hydrometeors to 20 µm. This limit is reasonable, be-

cause the collection efficiency is nearly 1 for these ice parti-

cle sizes. The ice particle breakup is minimized in the sub-

sequent Ice-CVI components, and ice particles in this size

range grow by water vapor diffusion, i.e., they should con-

tain only the former INP as a residual particle. Downstream

of the virtual impactor a pre-impactor removes supercooled

drops by contact freezing on cold impaction plates. Ice par-

ticles bounce and pass the impaction plates. A conventional

CVI (Mertes et al., 2005a, b) is located downstream of the

pre-impactor to reject interstitial particles smaller than 5 µm.

Thus, only ice particles in the 5–20 µm diameter range com-

pletely traverse the Ice-CVI. As with a conventional CVI

these small ice crystals are injected into a particle-free and

dry carrier gas which leads to evaporation and allows for the

analysis of the IPR.

2.1.3 ISI

The novel ISI (Kupiszewski et al., 2014) was designed to ex-

tract small ice crystals from mixed-phase clouds, simultane-

ously counting, sizing and imaging the hydrometeors con-

tained in the cloud with the use of WELAS 2500 sensors

(Pallas GmbH, Karlsruhe, Germany) and a Particle Phase

Discriminator (PPD-2K; Kupiszewski et al., 2014). The core

of the ISI is a droplet evaporation unit with ice-covered in-

ner walls, removing droplets using the Bergeron–Findeisen

process, while transmitting the ice crystals. In the final stage

of the ISI, a pumped counterflow virtual impactor removes

interstitials and cloud condensation nuclei released in the

droplet evaporation unit from the sample flow, thus ensur-

ing only ice crystals are transmitted. The extracted ice crys-

tals are subsequently sublimated, releasing the IPRs which

are transferred into the laboratory for further on- and offline

characterization of their physical and chemical properties.

2.2 Sample characterization

2.2.1 Scanning electron microscopy

A total of 36 samples (18 from FINCH, 13 from Ice-CVI,

5 from ISI) were acquired during the field campaign. All

samples were analyzed by SEM (FEI Quanta 200 FEG, FEI,

Eindhoven, the Netherlands) and EDX (EDAX, Tilburg, the

Netherlands). The particles of the different samples were

manually characterized with respect to their chemical com-

position, size, morphology, internal mixing state and stability

under electron bombardment. Particle size was determined as

the average geometrical diameter (equivalent projected area

diameter) from the electron images.

Based on chemical composition, morphology, mixing state

and beam stability, 18 particle groups were defined and

combined into 11 particle classes. Table 2 lists the parti-

cle groups, particle classes and classification criteria for the

manual analysis.

Pb-bearing particles were classified according to the pres-

ence of Pb only (i.e., as soon as Pb could be detected). They

might be homogeneous Pb-rich particles or particles contain-

ing Pb-rich inclusions. In the latter case, the main matrix

particles can be carbonaceous, soot, sulfate, sea salt, silicate,

metal oxide, a droplet or belong to the “other” class. Droplets

are identified by their typical morphology of larger residual

particles centered in a halo of small residuals, originating

from the splashing of the droplet at impaction. The center of

the residual can consist of unstable material (e.g., sulfate) or

stable sea salt, silicate, metal oxide, Ca-rich particles, or mix-

tures thereof. The halo particles are usually unstable under

electron bombardment. Particles which could not be classi-

fied into one of the classes mentioned above are summarized

in the particle class “other”. This particle class contains for

example Zn-rich and Mg-rich particles as well as Sn-, Ba-,

Bi- and Br-bearing particles with a total abundance of usu-

ally less than 1 %.

Due to the difference in sample substrate composition be-

tween TEM grids and elemental boron, in particular for the

detection of carbonaceous particles and thin carbonaceous

coatings, systematic deviations may occur with a potential

bias towards better detection of these particles on boron.

Atmos. Chem. Phys., 15, 4161–4178, 2015 www.atmos-chem-phys.net/15/4161/2015/
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Table 2. Classification criteria for particle classes and particle groups. Common features for certain particle types not used for classification

are given in parentheses.

Class Group Major elements Morphology Mixing statea Beam stability

Carbonaceousb Carbonaceous C non-soot no inclusion

Carbonaceous+ inclusion C non-soot inclusion

Secondary Secondary C, O, S

Sulfate Sulfate S, O, (Na, K) no residual unstable

Sulfate+ inclusion S, O, (Na, K) residual unstable

Soot Soot C soot-like no coating

Soot mixture C soot-like coating

Sea salt Sea salt Na, Cl, (K, Mg) no inclusion

Sea salt+ inclusion Na, Cl, (K, Mg) inclusion

Ca-rich Ca-rich Ca, O, (Mg, S, C) no inclusion

Ca-rich+ inclusion Ca, O, (Mg, S, C) inclusion

Metal oxide Metal oxide Fe, Al, Ti, (Mn) no coating

Metal oxide+ coating Fe, Al, Ti, (Mn) coating

Silicate Silicate Si, Al, (K, Ca, Mg, Fe, Ti) no coating

Silicate mixture Si, Al, (K, Ca, Mg, Fe, Ti) coating or

agglomerates

Pb-bearing Pb-bearing Pb present (also as

minor component)

Droplet Droplet particle centered

in ring of

smaller particles

Other Other

a Based on detailed SEM observations. Inclusion refers to a small object with different chemical composition inside a particle. Residuals are compounds left after

evaporation of a volatile matrix. Coating is a small film on the surface of a particle. Agglomerates are composed of distinguishable objects of similar size. b Carbonaceous

particles are interpreted as organic compounds which condensed from the gas phase due to their unspecific morphology and the absence of tracer elements for primary

biological particles (i.e., N, P, K).

2.2.2 Laser ablation mass spectrometry

LA-MS was carried out with ALABAMA (Aircraft-based

Laser Ablation Aerosol Mass Spectrometer), which was orig-

inally developed for aircraft operation (Brands et al., 2011)

but was also used in several ground-based measurement

campaigns. It provides the chemical composition of single

aerosol particles in an aerodynamic particle size range be-

tween 150 and 1500 nm, including refractory compounds

such as metals, dust, and soot. It was used during the INUIT-

JFJ campaign for the analysis of background aerosol parti-

cles and IPR (Schmidt et al., 2015). A total of 1809 IPR mass

spectra were collected: 1663 with the Ice-CVI (104 operation

hours) and 146 with ISI (32 operation hours).

2.3 Statistical analysis

Confidence intervals (after Clopper and Pearson, 1934) given

in this manuscript and in the Supplement were calculated

with R version 3.0.3 (R core team, 2014). For data displayed

in figures, the confidence intervals are given in the Supple-

ment.

2.4 Sampling location and meteorology

The JFJ station is located in a saddle between the moun-

tains Jungfrau and Mönch, which is oriented WSW–NNE.

This topography results in a channeling of the atmospheric

flow leading to a near-binary distribution of wind directions

as either NW or SSE. The atmospheric conditions during the

campaign are illustrated in Fig. 1. Hourly 5-day backward

trajectories for the JFJ station were calculated with the HYS-

PLIT (Hybrid Single Particle Lagrangian Integrated Trajec-

tory) model based on GDAS (Global Data Assimilation Sys-

tem) data (Draxler and Rolph, 2014).

At the top of Fig. 1, a period (labeled A) with compara-

tively homogeneous atmospheric conditions is marked. Tra-

jectories for this period can be found in the Supplement

(Fig. S1). It was chosen for instrumental comparison based

on individual samples. Homogeneity was determined from

meteorology, particle concentrations and changes in air mass

origin. Period A (2 February, 13:00–18:00 UTC) can be de-

scribed as follows. During the last day before arrival, air

masses travel approximately along the Rhine Valley at alti-

tudes between 1.5 and 2.5 km. Two days before arrival, the

air mass backward trajectories cross the North Sea and the

United Kingdom in the same altitude range. For the rest of

the trajectory length, the air masses were over the northern

www.atmos-chem-phys.net/15/4161/2015/ Atmos. Chem. Phys., 15, 4161–4178, 2015
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Figure 1. Atmospheric and FINCH operating conditions and INP/IPR sampling periods in February 2013. Times are given in UTC. Particle

number concentrations were taken from the World Data Centre for Aerosols home page (WDCA, 2014). Temperature and wind direction were

provided by the Jungfraujoch station operated by International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat.

Cloud presence was detected by measuring the liquid water content using a Particulate Volume Monitor (PVM-100, Gerber Scientific, Reston,

VA, USA) and a Cloud Droplet Probe (Droplet Measurement Technologies, Boulder, CO, USA). Sampling phases for SEM are marked by

wide, intensely colored bars; sampling phases for MS are shown as narrower, pale-colored bars. “A” marks a period used for case comparison.

Atlantic Ocean, in the region of Iceland. Wind, temperature

and in-cloud conditions were very stable during this period.

While the JFJ is usually in the free troposphere during the

winter months (Collaud Coen et al., 2011), abrupt increases

in particle concentrations may indicate a rise in the atmo-

spheric boundary layer height to the station altitude, which

leads to a local influence. This effect is visible as a sudden

increase in particle concentration in the middle of this period.

The samples were collected before (FINCH+ IN-PCVI) and

after (Ice-CVI) the highest particle concentrations, so we

consider period A as of Atlantic/free-troposphere origin with

minor local influence.

3 Results

3.1 Contamination artifact particles from the INP/IPR

sampling instruments

The sampling instruments yielded different types of arti-

fact particles indicated by their clear non-atmospheric ori-

gin. They consisted either of compounds used for manufac-

turing the instruments (e.g., aluminum, stainless steel) or had

the same composition and morphology as calibration aerosol

(e.g., Si-O spheres). Therefore, they were removed from fur-

ther analysis. Figure 2 shows secondary electron images of

the most common contamination artifact particles and their

energy-dispersive X-ray spectra. The relative abundance of

Atmos. Chem. Phys., 15, 4161–4178, 2015 www.atmos-chem-phys.net/15/4161/2015/
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Figure 2. Secondary electron images and energy-dispersive X-ray

spectra of instrumental contamination artifact particles. Character-

istic X-ray peaks of elements are labeled. Elements contained in the

sample substrate are given in parentheses.

the dominating artifact particles for each instrument is shown

in Fig. 3 as box plots.

With all three sampling techniques, small amounts of Fe-

Cr particles are observed as an artifact. They may derive from

internal abrasion of the instrument or tubing. In addition, for

the samples collected on boron substrates, Cu-rich particles

are present, which are most likely fragments from the embed-

ding material of the boron substrates (an epoxy resin contain-

ing copper chips for increased conductivity).

In the ISI samples, mainly Si-O spheres with a size of

approx. 1 µm are observed as artifacts. These particles were

most likely introduced into the instrument during calibration

of the optical particle spectrometers contained within the in-

let. The abundance of Si-O spheres in the samples ranged

from 26 to 94 %. Including the Fe-Cr-rich and Cu-rich arti-

facts, the abundance of all artifact particles ranged from 46

to 94 % during the measurement period.

In the FINCH+ IN-PCVI samples, Fe-Cr-rich and Cu-

rich particles as well as a few Au/Ag particles (not shown)

are identified as instrumental artifacts. Their total abundance

ranges from 0 to 60 % with a median of 20 %.

In the Ice-CVI samples, Al-O particles – probably alu-

minium oxides/hydroxides – occur as artifacts. The relative

abundance of these Al-O particles varied in the range of 0–

94 % by number. If we consider a particle breakup during

impaction as indicated by their small size in relation to the
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Figure 3. Box plots of the different instrumental contamination ar-

tifact particles for each sampling technique. Shown are minimum,

lower quartile, median, upper quartile, and maximum.

nominal impactor cutoff size, the relative number abundance

might be lower for airborne particles. As all Al-O particles

are classified as artifacts in the present paper, potentially oc-

curring atmospheric aluminium oxides/hydroxide particles in

the Ice-CVI would be overlooked. However, it can be safely

assumed that this potential error is minor, as no Al-O parti-

cles with the characteristic morphology (Fig. 2) were iden-

tified with the other two sampling instruments. The abun-

dance of other artifact particles in the Ice-CVI sample is

small (range of 0–8 %).

Lead-bearing particles are frequently found in the Ice-CVI

samples, but also to a much lesser extent in FINCH+ IN-

PCVI samples. These particles are regarded as effective INP

in previous works (Cziczo et al., 2009b; Ebert et al., 2011).

However, as parts of the Ice-CVI are manufactured from a

Pb-containing aluminum alloy, we performed additional tests

to evaluate whether the Pb-bearing particles are an instru-

mental contamination artifact. SEM inspection of the surface

of the impaction plates revealed the presence of large, homo-

geneous Pb-rich particles which consist of Pb, C and O (usu-

ally without an Al signal, when removed from the plates).

The atomic Pb / O ratio varied between 3 and 1, indicating

a composition of partially oxidized metallic lead. No halides

or sulfides could be detected on the plates. In contrast, the
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particles found as INP/IPR are mostly internally mixed with

other aerosol compounds, except for a few (less than 10 %)

homogeneous Pb-rich particles with a composition similar to

the Pb particles encountered on the impaction plates. There-

fore, the latter (homogeneous Pb particles) are considered as

artifacts. In previous campaigns at the JFJ station, Pb-rich

IPR inclusions in other particle types were identified as PbS

(Ebert et al., 2011), indicating a non-artifact origin. This in-

terpretation is also supported by the observed particle sizes.

The Pb-rich particles on the impaction plates are larger than

1 µm (geometric diameter), in contrast to the Pb-bearing IPR

which are mostly smaller than 1 µm. The Pb-rich inclusions

within the Pb-bearing IPR have sizes of few tens to few hun-

dreds of nanometers. In addition, considering the low im-

paction speeds inside the Ice-CVI (Mertes et al., 2007), in

particular, an abrasion of submicron particles can be consid-

ered as improbable. The Pb-rich particles are predominantly

observed in the Ice-CVI samples, but also to a lower extent in

FINCH+ IN-PCVI samples, where no Pb-containing alloys

were used. This observation also indicates that the majority

of Pb-rich particles are not instrumental contamination arti-

facts. However, for the minor amount of large homogeneous

Pb-rich particles an instrumental source is likely.

In summary, it must be concluded that the abundance of

contamination artifacts in the separated INP and IPR is gen-

erally large and cannot be neglected. Thus, the INP/IPR con-

centrations must be corrected to obtain accurate results. It

is highly recommended that measurements of INP/IPR con-

centrations are always accompanied by chemical and mor-

phological single-particle characterization in order to avoid

large systematic errors caused by contamination artifacts.

3.2 Composition of INP/IPR at the Jungfraujoch in

winter

During the field campaign 5 ISI, 18 FINCH+ IN-PCVI, and

13 Ice-CVI samples were analyzed with a total (non-artifact)

INP/IPR particle number of 2627. Due to the low particle

number on individual samples, the INPs/IPRs from all sam-

ples were integrated for each technique (Fig. 4) to yield better

statistics. Particles were classified according to their size in a

sub- and supermicron range.

Silicates are the main group of INPs/IPRs, independent

of sampling technique and size range (with the exception of

submicron particles encountered in ISI). Ca-rich particles are

predominantly found in the supermicron range with all three

sampling techniques, in contrast to soot and sulfate particles,

which occur mainly in the submicron range. Metal oxides are

present in both size ranges with a tendency to the submicron

range while sea-salt particles tend to be in the supermicron

range. However, if the low number of analyzed particles and

the resulting statistical uncertainty are considered, the ob-

served differences between the techniques are regarded only

as a trend. In addition, the three instruments could not be

operated strictly in parallel and thus sampled different time
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periods. In particular, ISI samples were taken only at the end

of the field campaign.

The main differences in composition trends between the

three sampling methods are the high content of carbonaceous

particles measured downstream of the ISI and the high con-

tent of Pb-bearing particles obtained by Ice-CVI. The high

concentration of carbonaceous particles in the ISI samples

may result from different air masses being sampled at the

end of the field campaign, when the ISI was operated. Dur-

ing this time, higher black carbon concentrations were mea-

sured than during the earlier periods (WDCA, 2014). The

Pb-bearing particles are discussed later in Sect. 3.4 in more

detail.

If the 11 particle classes are grouped into four simpli-

fied components – particles of potential terrigenous origin

(i.e., silicates and Ca-rich particles), C-dominated particles

(carbonaceous, soot), metal-oxides-dominated and soluble

particles (sulfate, droplets, sea salt) – the terrigenous par-

ticles are the main component with relative abundances of

32 % (ISI), 51 % (FINCH+ IN-PCVI) and 55 % (Ice-CVI).

The C-rich particles show a higher variation due to sam-

pling of different air masses and range from 9 % (Ice-CVI),

and 13 % (FINCH+ IN-PCVI) to 34 % (ISI). The soluble

particles vary between 22 % (ISI and Ice-CVI) and 32 %

(FINCH+ IN-PCVI).

The composition of the INP/IPR-samples varies between

different cloud events as well as between the INP/IPR

sampling techniques. The heterogeneity of the INP/IPR

composition is illustrated with the example of 2 Febru-

ary (Fig. 5), where relatively stable atmospheric condi-

tions prevailed. During this period, two samples were

taken between 17:40–18:10 (Ice-CVI) and 14:50–17:11 UTC

(FINCH+ IN-PCVI). The relative number abundance of the
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major components is quite similar, i.e., dominating silicates

with a fraction of 71 % (Ice-CVI) and 65 % (FINCH+ IN-

PCVI) as well as the presence of organics and metal oxides.

The relative abundance of the minor INP/IPR classes seems

to differ considerably. However, due to the small number of

particles sampled by FINCH+ IN-PCVI, no further conclu-

sions can be drawn. In addition, a part of these differences

may be caused by the different INP/IPR sampling techniques

and short-term changes in meteorological conditions.

Potential INP/IPR sampling artifacts

In addition to the clearly identifiable instrumental contami-

nation artifacts, potential INP/IPR sampling artifacts may oc-

cur. We define potential sampling artifacts as particles, which

pass the selection mechanisms similar to INPs/IPRs, while

being questionable to act as INP/IPR (e.g., Pruppacher and

Klett, 1997). The potential sampling artifacts include sea-salt

particles, sulfate particles and particles which impact on the

sampling substrates as droplets. As we cannot exclude that

these particles are INPs/IPRs, we do not exclude them from

further analysis in contrast to the instrumental contamination

artifacts.

Droplets are characterized by their morphology of a resid-

ual with a halo (Fig. 6). While in principle the heating and

drying line should lead to total evaporation of particle-bound

water, obviously some particles were still in liquid state dur-

ing impaction sampling. As we cannot distinguish incom-

pletely dried IPRs from supercooled droplets, which were

falsely identified as INP/IPR, we consider droplets as poten-

tial INP/IPR sampling artifacts. Sulfate particles were pref-

erentially found in the submicron size range, while sea-salt

500 nm 500 nm

Figure 6. Secondary electron images of droplets with their typical

morphology of a halo around a residual.

particles have a tendency to be of larger size. Droplets, how-

ever, occur rather uniformly in both size ranges.

The relative number abundances of the three potential

sampling artifacts (droplets, (non-droplet) sulfate and sea

salt) are shown as box plots (in Fig. 7), separately for each

INP/IPR sampling instrument. All potential INP/IPR sam-

pling artifacts are observed for all three techniques, and their

relative abundances are on comparable levels of 0–10 % for

each particle type. However, the Ice-CVI, in particular, ex-

tracted a higher number of sea-salt particles as IPR. For sin-

gle measurements, the abundance of these potential sampling

artifacts can reach up to 40 %.

3.3 Size distribution of INP/IPR components

To allow for the display of a size distribution (Fig. 8),

we combined the classes into generalized components of

INP/IPR to achieve higher particle counts for each particle

size interval. Instrumental contamination artifacts and Pb-

bearing particles are excluded in this presentation. Note that

size distributions obtained with the different techniques can-

not be compared directly due to different inlet and transmis-

sion efficiencies. However, all three methods yield a maxi-

mum of between 0.3 and 0.5 µm in geometric diameter. In ad-

dition, ISI shows a secondary maximum of around 1–1.5 µm.

With ISI and FINCH-IN-PCVI, silicates and Ca-rich parti-

cles are predominantly found at the larger particles sizes. The

relative abundance of carbonaceous/soot as well as metal ox-

ides is higher within the submicron range. The soluble and

secondary particles do not show a particular size preference

in their relative abundance. For the Ice-CVI, there seems to

be a trend towards a higher abundance of soluble/secondary

material with increasing particle size. However, this cannot

be regarded as significant due to the extremely low parti-

cle numbers for supermicron particles (less than 10 for each

sample and size interval). In the submicron range, no size

dependency is visible.

3.4 Mixing state and Pb-bearing INP/IPR

A significant fraction of the INPs/IPRs consists of particles

with coatings or inclusions (see groups in Fig. 4). The rela-

tive abundance of internally mixed particles for each parti-
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cle type is summarized in Table 3. It is apparent that mainly

silicate particles and to a lesser extent metal oxides are in-

ternally mixed. Mixing partners are mostly sulfate and car-

bonaceous matter, but also sea salt, if present in the total

aerosol. The other particle types are less frequently internally

mixed. Regarding differences between the sampling tech-

niques, in particular INPs measured by FINCH+ IN-PCVI

are considerably more frequently internally mixed than IPRs

of ISI and Ice-CVI. The (non-droplet) sulfates obtained as

INP/IPR contain in most cases no heterogeneous inclusions.

Also, most of the soot and Ca-rich particles have no coating,

which is consistent for all sampling techniques. In contrast,

the mixing state of carbonaceous particles was found to be

highly different, rarely mixed for ISI (7 %) and frequently

mixed for FINCH+ IN-PCVI (64 %).

In previous IPR measurements at the JFJ station (Cziczo

et al., 2009b; Ebert et al., 2011), Pb-bearing particles were

found in high abundance with the Ice-CVI. For comparison

with the previous work (Fig. 9), we have selected the Pb-

bearing particles from the total INPs/IPRs and determined

their mixing partner. For comparability, the particles were

classified in the same way as for the CLACE 5 campaign

(Ebert et al., 2011). Pb-bearing particles are only found with

Ice-CVI and FINCH+ IN-PCVI. The Pb inclusions occur
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Figure 8. Average of all single sample size distributions of major

INP/IPR components for ISI, FINCH+ IN-PCVI and Ice-CVI. Par-

ticle groups were combined according to potential sources to obtain

a sufficient number of particles in each size interval. Left column:

number size distribution in dN/dd (number density per size inter-

val). Note that the different size distributions cannot be compared

directly due to different instrumental inlet and transmission efficien-

cies. Right column: relative number abundance. Size intervals with

less than 15 particles are not shown.

within the same main particle classes identified as INP/IPR

in general, i.e., mainly silicates, Ca-rich particles, sulfates,

sea-salt, and carbonaceous particles. In addition, externally

mixed (homogeneous) Pb-bearing particles are present in

minor abundance. While fewer externally mixed Pb-bearing

particles were observed in the present field campaign (com-

pared to Ebert et al., 2011), the abundance of the other Pb-

bearing groups is similar, except for the more abundant Al-

rich and the less abundant homogeneous Pb-rich ones.
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Table 3. Number fraction (%) of internally mixed particles in each particle class (95 % confidence interval in parentheses).

Particle class ISI FINCH+ IN-PCVI Ice-CVI

Silicate 58.5 (44.1–71.9) 61.5 (56.9–65.9) 36.9 (33.0–40.9)

Metal oxide 4.3 (0.1–21.9) 66.7 (58.3–74.3) 38.8 (27.1–51.5)

Ca-rich 9.1 (1.1–29.2) 7.5 (3.1–14.9) 7.4 (0.9–24.3)

Sea salt 10.0 (0.3–44.5) 53.8 (25.1–80.8) 8.7 (3.8–16.4)

Soot 12.5 (0.3–52.7) 5.0 (0.1–24.9) 6.3 (0.8–20.8)

Sulfate 0.0 (0.0–30.8) 2.0 (0.6–5.1) 3.9 (0.5–13.5)

Carbonaceous 6.8 (1.9–16.5) 63.9 (55.9–71.4) 27.8 (16.5–41.6)

0

10

20

30

40

50

60

70

80

90

100

re
la

ti
v

e
n

u
m

b
e

r
a

b
u

n
d

a
n

c
e

,
%

INUIT CLACE 5

C-O-(S)-bearing

Soot

Sea-salt / sulfate

Ca-rich

Al-rich

Metal oxides

Silicates

Homogeneous Pb-rich

Other

117 576 total number of particles

Figure 9. Comparison of the composition/mixing state of Pb-
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For confidence intervals see Table S5 in the Supplement.

4 Discussion

4.1 Composition of INP/IPR

4.1.1 Which particle classes can be regarded as

INP/IPR?

Silicates were identified as common INP/IPR in laboratory

experiments as well as in field experiments (Hoose and Möh-

ler, 2012; Murray et al., 2012). Also, in our field campaign

silicates are the most abundant INP/IPR components. Ca-rich

particles – e.g., carbonates like calcite – are not frequently

regarded as INPs (e.g., Murray et al., 2012). However, ac-

cording to laboratory experiments calcite can act as an INP

(Zimmermann et al., 2008). Therefore, the Ca-rich particles

are regarded as INP/IPR. Metal oxides are also commonly

observed as IPR in field experiments (Chen et al., 1998; De-

Mott et al., 2003). Similar to our study, Fe-rich particles are

usually the main group within the metal oxides. In addition,

Al-, Ti-, Zn-, Cr-, and Ca-rich particles were found in the

present investigation and by Chen et al. (1998).

Based on field experiments and laboratory studies, Pb-

bearing particles are in general regarded as good ice nuclei

(for a detailed discussion refer to Cziczo et al., 2009b). In

the present study, lead is found in two forms: as Pb-rich in-

clusions in other particles (major abundance) and as homoge-

neous Pb-rich particles (minor abundance). The minor frac-

tion of homogeneous Pb-rich particles is regarded as an in-

strumental artifact (see discussion above), but due to its low

abundance of less than 10 % (equaling about 10 particles), it

is neglected from further discussion.

The ice nucleation ability of soot and carbonaceous par-

ticles is discussed controversially in the previous literature.

While an enrichment of black carbon in IPRs was observed

in field experiments (Cozic et al., 2008), there are also other

findings where organic-rich particles preferentially remain

unfrozen (Cziczo et al., 2004). It has to be mentioned, how-

ever, that carbon-rich particles are often named ambiguously

depending on the technique used for analysis (see also Mur-

ray et al., 2012; Petzold et al., 2013). Thus, discrepancies

may arise from the fact that different types of carbona-

ceous material (e.g., nanocrystalline graphite, organic ma-

terial) are compared. Laboratory experiments show that the

ice-forming activity of soot is influenced by size, surface area

and the concentration of the surface chemical groups that can

form hydrogen bonds with water molecules (Gorbunov et al.,

2001; Koehler et al., 2009). According to the latter, the ice-

forming activity of soot is close to that of metal oxides. In

summary, we conclude that soot and carbonaceous particles

observed in our samples were active as INP.

Also, for secondary aerosol particles the ice nucleation

ability is discussed controversially. As in the case of soot and

carbonaceous matter, secondary aerosol particles are found

in field measurements of INP (Abbatt et al., 2006; Prenni et

al., 2009b) and in laboratory experiments under cirrus cloud

conditions (Hoose and Möhler, 2012). In contrast, Cziczo et

al. (2004) report from a field study that organic-rich particles

(internally mixed particles of sulfates and organic species)

preferentially remain unfrozen. Based on our data, where

secondary material is present in many INP/IPR samples, we

consider these particles to be INPs/IPRs.
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Sea salt as INP/IPR was described for field studies by

Cziczo and Froyd (2014) and Targino et al. (2006). While

crystalline salts were found in a laboratory study to be able

to act as INPs under upper-tropospheric conditions (Zuberi

et al., 2001), there has been a need of clarifying the process

by which a hygroscopic and soluble material should act as

IN. However, recently, Wise et al. (2012) explained this be-

havior by fractional crystallization of the solute component

under decreasing temperatures. Based on these findings, we

consider sea salt as potential sampling artifacts.

Similar to sea salt, no agreement exists on the ice nucle-

ation ability of sulfate particles. Sulfates may act as INP

in cirrus clouds in the upper troposphere and lower strato-

sphere, both in immersion and deposition modes (Abbatt et

al., 2006, and references therein; Hoose and Möhler, 2012).

Sulfates acting as INP are found in a field study in increasing

abundance with decreasing temperature under cirrus condi-

tions (−56 to −39 ◦C; Twohy and Poellot, 2005) but usually

not in the warmer mixed-phase clouds as encountered dur-

ing our field experiment. Considering the usually high rela-

tive abundance of sulfates in the total aerosol (Ebert et al.,

2011), we cannot exclude the possibility that sulfates are an

artifact of the INP/IPR discrimination techniques not having

perfect (i.e., 100 %) discrimination efficiency. Thus, we con-

sider sulfate particles as potential sampling artifacts. Similar

considerations apply to the observed droplets.

As explained in the methods section, contamination arti-

fact particles were removed from the further analysis, while

potential sampling artifacts are included in the data.

4.1.2 Relative abundance of particle classes among

INP/IPR

If all INP/IPR particles of the three sampling methods are

summed up, the following averaged INP/IPR composition of

the whole field campaign is obtained: 52 % terrigenous parti-

cles (38 % silicates, 9 % metal oxides, 5 % Ca-rich particles),

14 % C-rich particles (12 % carbonaceous particles, 2 %

soot), 1 % secondary particles, 11 % sulfate, 11 % droplets,

4 % sea salt, 5 % Pb-bearing particles, and 2 % other parti-

cles.

A compilation of INP/IPR composition encountered in

mixed-phase clouds is shown in Table 4. In general, the re-

sults of the present study are in good agreement with the find-

ings of previous work. Silicates are the most abundant com-

ponent of INP/IPR with a relative number abundance vary-

ing between 40 and 71 %. The second most abundant com-

ponent is carbonaceous material (16–43 %), followed by salts

(sea salt, sulfates, droplets) with a relative number abundance

between 5 and 27 %. The high abundance of coated parti-

cles observed in the present study is in good agreement with

Targino et al. (2006), who observed sulfur coatings for all

groups indicating ageing and in-cloud processing.

An overview of IPR compositions found during 13

field campaigns of cirrus clouds is given by Cziczo and

Froyd (2014). Also, here the main particle types are mineral

dust, metals, BC/soot, sea salt, sulfate, and biomass burning.

A relatively high abundance of Pb-bearing particles, in

particular internally mixed ones, seems to be characteris-

tic for IPR at the JFJ station. They were found in previ-

ous work (Cziczo et al., 2009b; Ebert et al., 2011) and dur-

ing the present field campaign. However, the fraction of Pb-

bearing particles in the whole INUIT campaign is 1 % for

FINCH+ IN-PCVI, and 10 % for Ice-CVI. In contrast, a

higher fraction of up to 20 % was found during CLACE 5. As

helicopter flights – where Pb-rich particles might be emitted

due to leaded fuel usage – around the JFJ station were more

frequent during CLACE 5 than during the present field cam-

paign, the decrease in the abundance of Pb-bearing particles

indicates a considerable contribution of local emissions to the

INP formation at the JFJ station.

Feldspar minerals and in particular K-feldspars (e.g., mi-

crocline) were discussed as efficient INPs (Atkinson et al.,

2013; Yakobi-Hancock et al., 2013). Despite the fact that

we did not determine the mineralogical phase of the sili-

cate particles, we can show by SEM-EDX that they have

low potassium contents (K / Si atomic ratio < 0.1). Thus, it is

concluded that K-feldspar particles do not occur as INP/IPR

at JFJ in winter. Ca-rich particles appear in the supermicron

fraction with a number abundance ratio of 0.1–0.33 relative

to silicates (depending on method and sample), which is in

the range reported for natural mineral dust (Kandler et al.,

2007, 2009, 2011; Coz et al., 2009). Thus, Ca-rich particles

can be considered as similarly effective IN as silicates.

4.2 Significance of mixing state and particle class for

ice nucleation

A significant fraction of the INPs/IPRs occurs as internal

mixtures (Table 3). This fraction is similar to previous lit-

erature data. Chen et al. (1998) reported that a fraction of

25 % of the INPs were a mixture of sulfates and elements

indicative of insoluble particles. The same relative abun-

dance of mixtures of metal oxides/dust with either carbona-

ceous components or salts/sulfates was reported by Prenni et

al. (2009a). For the JFJ station, a slightly lower fraction of

internally mixed particles was found during the CLACE 5/6

campaigns: 9–15 % by Ebert et al. (2011) and up to 15 % by

Kamphus et al. (2010).

Especially notable is the observed difference between sili-

cates and Ca-rich particles. While silicates are usually inter-

nally mixed, the Ca-rich particles do not have a detectable

coating. This may indicate that for silicates a coating is less

effective in reducing their IN ability than for Ca-rich par-

ticles, pointing to a more pronounced processing (e.g., de-

struction of the surface structure) of the latter. However, the

influence of coatings on the ice nucleation ability of silicates

is discussed controversially. In field experiments, coatings on

silicates and metal oxides are commonly observed (Chen et

al., 1998; Targino et al., 2006; Prenni et al., 2009a). In lab-
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Table 4. Average INP/IPR composition encountered in mixed-phase clouds for several field experiments.

Location Particle type Reference Terrigenousa Carbonaceousb Salts Others

Alaska/Arctic INP Prenni et al. (2009a) 64 % 35 % IMc

Northern Scandinavia IPR Targino et al. (2006) 58 % 23 % 7 % 12 %

Jungfraujoch IPR Kamphus et al. (2010) 57 % 25 %c IMc 15 %

Jungfraujoch IPR Ebert et al. (2011)d 40 % 43 % 12 % 5 %

Jungfraujoch INP+IPR this studyd 71 % 21 % 5 % 3 %

Jungfraujoch INP+IPR this studye 55 % 16 % 27 % 2 %

a Containing internal mixtures of terrigenous materials with sulfate and organics; b containing also sulfate; c IM: present in internal mixtures only;
d excluding droplets and sulfate; Pb-bearing particles classified according to major particle composition; e including droplets and sulfate; Pb-bearing

particles classified according to major particle composition.

oratory experiments, conflicting results are obtained. While

Cziczo et al. (2009a) as well as Hoose and Möhler (2012)

reported a deactivation of the ice nuclei due to coatings, Sul-

livan et al. (2010) found that coatings do not always effect

the ice nucleation ability. In contrast, Archuleta et al. (2005)

and Zuberi et al. (2002) discuss mineral dust as an efficient

nucleus for ice in NH4SO4–H2O aerosols and demonstrated

that mineral particles coated with sulfate increase the freez-

ing temperature up to 10 K compared to pure sulfate solu-

tions. In addition, Richardson et al. (2007) reported that sol-

uble coatings favor condensation-freezing nucleation and in-

hibit nucleation by vapor deposition. But they also mention,

that coating itself may act either to increase or decrease ice

nucleation efficiency independently of the nucleation mech-

anism.

4.3 Comparison between FINCH + IN-PCVI, Ice-CVI

and ISI

A reasonable agreement between the different sampling tech-

niques is obtained for the major particle classes observed

among the INP/IPR. However, the variation in INP/IPR

composition due to meteorological conditions in connection

with the non-parallel sampling introduces a systematic error.

The non-parallel sampling could not be avoided during the

present field campaign, as the sampling techniques were not

yet in a state allowing for synchronized operation and the

available flow from the INP/IPR samplers was insufficient

for a sampling for SEM and operation of LA-MS in parallel.

Consequently, INP/IPR composition snapshots from differ-

ent time periods needed to be integrated for comparison of

the INP/IPR composition.

The reasons for the different instrumental contamination

artifacts were identified. Thus, these artifacts can be avoided

in future by removing their sources (e.g., replacement/sealing

of contaminating surfaces, thoroughly purging). The relative

abundance of potential sampling artifacts is in general low

(median < 5 %), except for sea-salt particles sampled by the

Ice-CVI with a median of 10 % (Fig. 7).

Despite the frequent non-parallel sampling, the major

INP/IPR classes found by all three techniques include sili-

cates, Ca-rich particles, carbonaceous material, and metal ox-

ides. In addition, soot was observed as a minor component in

the fine fraction (< 1 µm diameter) by all methods. These ob-

servations are also in general agreement with previous work

(see above).

In contrast, in the fine fraction a considerably higher rel-

ative abundance of carbonaceous material was found by ISI

and a higher relative abundance of silicates and silicate mix-

tures by Ice-CVI. These differences are most likely caused

by the non-parallel sampling. It must be emphasized again

that samples from the ISI were only obtained during the last

week of the field campaign (Fig. 1).

4.4 Comparison between scanning electron microscopy

and laser ablation mass spectrometry

The results of the offline SEM-EDX analysis of the collected

INP/IPR particles can be compared to the findings of on-

line LA-MS. Unfortunately, both techniques could not be

run in parallel because of the limited available sample flow

that could be provided by the sampling systems. Due to the

low INP/IPR concentrations, it was necessary to integrate

all available data, which may lead to systematic errors due

to significant variations in the IPR chemical composition as

a function of changing air masses and meteorological con-

ditions. Furthermore, for a comparison between SEM-EDX

and LA-MS a more general particle classification scheme,

combining the detailed SEM-EDX classes, was necessary.

The average particle class number abundance, derived by

SEM-EDX – separately for all IPRs from the ISI and Ice-

CVI – is compared in Fig. 10 to the results of the LA-

MS (Schmidt et al., 2015). The most obvious difference be-

tween the two analysis techniques is the presence of 10–18 %

of secondary particles (mostly mixtures of sulfates/nitrates

and/or organics), pure sulfates and droplets (residuals of

volatile species like nitrates and organics) in SEM-EDX.

These classes are completely absent in LA-MS. This differ-

ence can be explained by the fact that due to technical is-

sues anions were not measured by LA-MS during the present

campaign. Without the detection of anions, sulfate and ni-

trate cannot be identified by LA-MS, such that these particles
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Figure 10. Comparison of particle class relative number abundance

determined by SEM-EDX and LA-MS for IPRs sampled by ISI and

Ice-CVI. To allow for a comparison of the two different analytical

approaches of SEM-EDX and LA-MS, classes were combined ac-

cordingly. For confidence intervals see Table S6 in the Supplement.

are classified according to their dominant cations and are as-

signed to one of the listed particle groups.

For the other classes, a fair agreement of the results is ob-

tained. First, the sum of mineral dust, sea salt, carbonaceous

material and soot (red and green colors in Fig. 10) contributes

70–90 % to the IPR. Second, metal oxides (based on SEM-

EDX: mainly iron oxides) occur at an abundance of 5–10 %.

Third, Ice-CVI samples contain Pb-rich particles (5–10 %),

while these particles are absent in the ISI. These results do

not change considerably if, for SEM-EDX, the particles out-

side the LA-MS size range (> 1.5 µm diameter) are neglected.

However, pronounced discrepancies exist between SEM-

EDX and LA-MS data, in particular for Ice-CVI. For this

sampling technique, a lower abundance of carbonaceous ma-

terial is found by SEM-EDX as is a higher abundance of sil-

icates. This quantitative comparison of compositional data

from both analysis techniques is hampered by the different

approach in particle characterization. The particle classifica-

tion with SEM-EDX relies on the characteristic X-ray sig-

nals, which can be used to quantify the chemical compo-

sition of a particle. Our classification scheme uses mainly

the major elements (i.e., a relative contribution larger than

10 at. %, excluding oxygen) detected inside a particle to as-

sign it to the respective group. Minor elements (less than ap-

proximately 10 at. %) are mostly neglected in particle classi-

fication. Trace elements (less than 0.5 at. %) cannot be mea-

sured at all. In contrast, single particle LA-MS relies on

ionized compounds, so ionization efficiency plays a major

role. Thus, strong signals often originate from the atoms or

molecules, which can be ionized best in LA-MS, but are not

necessarily a major component of the particle. While LA-MS

works usually well for externally mixed particles, problems

can arise for the classification of internally mixed particles.

In our particular case, it cannot be excluded that, for example,

a silicate particle with a thin organic coating is classified as

silicate in SEM-EDX (based on Si as major element) but as a

carbonaceous particle in LA-MS (based on a strong signal of

ionized carbonaceous matter). This example clearly demon-

strates the need for further systematical comparison between

these two analytical techniques.

5 Summary and conclusions

For the first time, the chemical composition of individual

INPs/IPRs collected by three techniques – ISI, FINCH+ IN-

PCVI and Ice-CVI – was analyzed in a field experiment.

In winter, the INP/IPR composition at the Jungfraujoch sta-

tion is composed of five main classes: the dominating ter-

rigenous silicates/Ca-rich particles, carbonaceous particles,

metal oxides/hydroxides (Fe-, Ti-, or Al-oxides/hydroxides),

soot, and soluble particles like sea salt, sulfates and droplets.

However, the latter class of soluble particles are considered

as potential sampling artifacts. Lead inclusions occur in sev-

eral INPs/IPRs, while large homogeneous Pb-rich particles

are considered partially as artifacts. The composition is gen-

erally similar to earlier field experiments. Despite the non-

parallel sampling, the methods roughly agree regarding ma-

jor and minor components. Thus, we consider this experi-

ment as a successful step in improving the accuracy of mea-

suring the INP/IPR chemical composition.

For all three INP/IPR separation techniques, different con-

tamination artifacts and potential sampling artifacts were

identified. These artifacts are easily detectable by the chem-

ical and morphological analysis. In contrast, the counting or

size distribution techniques would consider these contami-

nation and sampling artifacts as real INP/IPR and, conse-

quently, overestimate the INP/IPR concentration. Thus, the

present work provides information suitable for correction of

counting techniques, for the contamination artifacts as well

as for sampling artifacts. While, for the former, correction

is necessary, interpretation of the latter might change with

further knowledge regarding the INP/IPR abilities of soluble

compounds.

Deeper data investigations reveal that beyond the agree-

ment in the maximum of the INP/IPR size distribution, there

are considerable differences between the instruments point-

ing to different efficiencies in INP activation and IPR separa-

tion. This is particularly obvious when we consider the large

difference in internally mixed-particle abundance. While a

part of these discrepancies might be explained by atmo-

spheric variability in connection with non-parallel sampling

(an issue which is expected to be overcome in future ex-

periments by increased stability in instrument operation),

they also indicate lack in understanding regarding the chem-
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ical selectivity of the different INP/IPR-discriminating tech-

niques.

Finally, a few statements regarding limitations of the in-

vestigated techniques as well as recommendations for future

work on INP/IPR can be made.

a. Measurements of INP/IPR concentrations should be al-

ways accompanied by characterization of the INP/IPR

chemistry to readily identify strong contributions of

instrumental artifacts. Although different techniques

are in principal possible, scanning electron microscopy

with high-resolution instruments has proven to be espe-

cially suited for this purpose.

b. More work is needed to clarify the ice nucleation ability

of sea salt and sulfates in mixed-phase clouds.

c. More emphasis should be placed on the particle mixing

state in the atmosphere. Due to its complexity, labora-

tory tests on the performance of the different INP/IPR

sampling techniques may lead to overconfidence in the

results of field measurements.

d. Substantial work is still necessary to develop the here-

presented approaches of INP/IPR sampling to robust

routine techniques.

The Supplement related to this article is available online

at doi:10.5194/acp-15-4161-2015-supplement.
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