000276338 001__ 276338
000276338 005__ 20210129220845.0
000276338 0247_ $$2doi$$a10.1109/IGARSS.2015.7326030
000276338 037__ $$aFZJ-2015-06798
000276338 041__ $$aEnglish
000276338 1001_ $$0P:(DE-HGF)0$$aCavallaro, G.$$b0$$eCorresponding author
000276338 1112_ $$aIEEE International Geoscience and Remote Sensing Symposium$$cMilan$$d2015-07-26 - 2015-07-31$$gIGARSS 2015$$wItaly
000276338 245__ $$aScalable developments for big data analytics in remote sensing
000276338 260__ $$bIEEE$$c2015
000276338 29510 $$a2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) : [Proceedings] - IEEE, 2015. - ISBN 978-1-4799-7929-5
000276338 300__ $$a1366 - 1369
000276338 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1448465227_32104
000276338 3367_ $$033$$2EndNote$$aConference Paper
000276338 3367_ $$2ORCID$$aCONFERENCE_PAPER
000276338 3367_ $$2DataCite$$aOutput Types/Conference Paper
000276338 3367_ $$2DRIVER$$aconferenceObject
000276338 3367_ $$2BibTeX$$aINPROCEEDINGS
000276338 520__ $$aBig Data Analytics methods take advantage of techniques from the fields of data mining, machine learning, or statistics with a focus on analysing large quantities of data (aka ‘big datasets’) with modern technologies. Big data sets appear in remote sensing in the sense of large volumes, but also in the sense of an ever increasing amount of spectral bands (i.e., high-dimensional data). The remote sensing has traditionally used the above described techniques for a wide variety of application such as classification (e.g., land cover analysis using different spectral bands from satellite data), but more recently scalability challenges occur when using traditional (often serial) methods. This paper addresses observed scalability limits when using support vector machines (SVMs) for classification and discusses scalable and parallel developments used in concrete application areas of remote sensing. Different approaches that are based on massively parallel methods are discussed as well as recent developments in parallel methods.
000276338 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000276338 588__ $$aDataset connected to CrossRef Conference
000276338 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b1$$ufzj
000276338 7001_ $$0P:(DE-Juel1)164357$$aBodenstein, C.$$b2$$ufzj
000276338 7001_ $$0P:(DE-Juel1)8832$$aGlock, P.$$b3$$ufzj
000276338 7001_ $$0P:(DE-Juel1)145217$$aRicherzhagen, M.$$b4$$ufzj
000276338 7001_ $$0P:(DE-Juel1)162390$$aGoetz, M.$$b5$$ufzj
000276338 7001_ $$0P:(DE-HGF)0$$aBenediktsson, J. A.$$b6
000276338 773__ $$a10.1109/IGARSS.2015.7326030
000276338 909CO $$ooai:juser.fz-juelich.de:276338$$pVDB
000276338 9141_ $$y2015
000276338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000276338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164357$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000276338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8832$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000276338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145217$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000276338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162390$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000276338 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000276338 920__ $$lyes
000276338 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000276338 980__ $$acontrib
000276338 980__ $$aVDB
000276338 980__ $$aI:(DE-Juel1)JSC-20090406
000276338 980__ $$aUNRESTRICTED