| Home > Publications database > Scalable developments for big data analytics in remote sensing > print |
| 001 | 276338 | ||
| 005 | 20210129220845.0 | ||
| 024 | 7 | _ | |2 doi |a 10.1109/IGARSS.2015.7326030 |
| 037 | _ | _ | |a FZJ-2015-06798 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Cavallaro, G. |b 0 |e Corresponding author |
| 111 | 2 | _ | |a IEEE International Geoscience and Remote Sensing Symposium |g IGARSS 2015 |c Milan |d 2015-07-26 - 2015-07-31 |w Italy |
| 245 | _ | _ | |a Scalable developments for big data analytics in remote sensing |
| 260 | _ | _ | |b IEEE |c 2015 |
| 295 | 1 | 0 | |a 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) : [Proceedings] - IEEE, 2015. - ISBN 978-1-4799-7929-5 |
| 300 | _ | _ | |a 1366 - 1369 |
| 336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1448465227_32104 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 520 | _ | _ | |a Big Data Analytics methods take advantage of techniques from the fields of data mining, machine learning, or statistics with a focus on analysing large quantities of data (aka ‘big datasets’) with modern technologies. Big data sets appear in remote sensing in the sense of large volumes, but also in the sense of an ever increasing amount of spectral bands (i.e., high-dimensional data). The remote sensing has traditionally used the above described techniques for a wide variety of application such as classification (e.g., land cover analysis using different spectral bands from satellite data), but more recently scalability challenges occur when using traditional (often serial) methods. This paper addresses observed scalability limits when using support vector machines (SVMs) for classification and discusses scalable and parallel developments used in concrete application areas of remote sensing. Different approaches that are based on massively parallel methods are discussed as well as recent developments in parallel methods. |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-512 |a 512 - Data-Intensive Science and Federated Computing (POF3-512) |c POF3-512 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef Conference |
| 700 | 1 | _ | |0 P:(DE-Juel1)132239 |a Riedel, Morris |b 1 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)164357 |a Bodenstein, C. |b 2 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)8832 |a Glock, P. |b 3 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)145217 |a Richerzhagen, M. |b 4 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)162390 |a Goetz, M. |b 5 |u fzj |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Benediktsson, J. A. |b 6 |
| 773 | _ | _ | |a 10.1109/IGARSS.2015.7326030 |
| 909 | C | O | |o oai:juser.fz-juelich.de:276338 |p VDB |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)132239 |a Forschungszentrum Jülich GmbH |b 1 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)164357 |a Forschungszentrum Jülich GmbH |b 2 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)8832 |a Forschungszentrum Jülich GmbH |b 3 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)145217 |a Forschungszentrum Jülich GmbH |b 4 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)162390 |a Forschungszentrum Jülich GmbH |b 5 |k FZJ |
| 913 | 1 | _ | |0 G:(DE-HGF)POF3-512 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |v Data-Intensive Science and Federated Computing |x 0 |l Supercomputing & Big Data |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2015 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a contrib |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|