001     276358
005     20240712101029.0
024 7 _ |2 doi
|a 10.5194/acp-15-5325-2015
024 7 _ |2 ISSN
|a 1680-7316
024 7 _ |2 ISSN
|a 1680-7324
024 7 _ |2 Handle
|a 2128/9462
024 7 _ |2 WOS
|a WOS:000355289200001
024 7 _ |a altmetric:4009741
|2 altmetric
037 _ _ |a FZJ-2015-06816
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Bocquet, M.
|b 0
245 _ _ |a Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1448527036_24258
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorological and chemical data; however, because CCMM are fairly recent, data assimilation in CCMM has been limited to date. We review here the current status of data assimilation in atmospheric chemistry models with a particular focus on future prospects for data assimilation in CCMM. We first review the methods available for data assimilation in atmospheric models, including variational methods, ensemble Kalman filters, and hybrid methods. Next, we review past applications that have included chemical data assimilation in chemical transport models (CTM) and in CCMM. Observational data sets available for chemical data assimilation are described, including surface data, surface-based remote sensing, airborne data, and satellite data. Several case studies of chemical data assimilation in CCMM are presented to highlight the benefits obtained by assimilating chemical data in CCMM. A case study of data assimilation to constrain emissions is also presented. There are few examples to date of joint meteorological and chemical data assimilation in CCMM and potential difficulties associated with data assimilation in CCMM are discussed. As the number of variables being assimilated increases, it is essential to characterize correctly the errors; in particular, the specification of error cross-correlations may be problematic. In some cases, offline diagnostics are necessary to ensure that data assimilation can truly improve model performance. However, the main challenge is likely to be the paucity of chemical data available for assimilation in CCMM.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129194
|a Elbern, H.
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Eskes, H.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Hirtl, M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Žabkar, R.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Carmichael, G. R.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Flemming, J.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Inness, A.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Pagowski, M.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Pérez Camaño, J. L.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Saide, P. E.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a San Jose, R.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Sofiev, M.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Vira, J.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Baklanov, A.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Carnevale, C.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Grell, G.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Seigneur, C.
|b 17
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-15-5325-2015
|g Vol. 15, no. 10, p. 5325 - 5358
|n 10
|p 5325 - 5358
|t Atmospheric chemistry and physics
|v 15
|x 1680-7324
|y 2015
856 4 _ |u http://www.atmos-chem-phys.net/15/5325/2015/acp-15-5325-2015.pdf
856 4 _ |u https://juser.fz-juelich.de/record/276358/files/acp-15-5325-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276358/files/acp-15-5325-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276358/files/acp-15-5325-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276358/files/acp-15-5325-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276358/files/acp-15-5325-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276358/files/acp-15-5325-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:276358
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129194
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21