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Abstract

Data assimilation is used in atmospheric chemistry models to improve air quality fore-
casts, construct re-analyses of three-dimensional chemical (including aerosol) con-
centrations and perform inverse modeling of input variables or model parameters (e.g.,
emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chem-5

istry models that simulate meteorological processes and chemical transformations
jointly. They offer the possibility to assimilate both meteorological and chemical data;
however, because CCMM are fairly recent, data assimilation in CCMM has been lim-
ited to date. We review here the current status of data assimilation in atmospheric
chemistry models with a particular focus on future prospects for data assimilation in10

CCMM. We first review the methods available for data assimilation in atmospheric mod-
els, including variational methods, ensemble Kalman filters, and hybrid methods. Next,
we review past applications that have included chemical data assimilation in chemical
transport models (CTM) and in CCMM. Observational data sets available for chemical
data assimilation are described, including surface data, surface-based remote sensing,15

airborne data, and satellite data. Several case studies of chemical data assimilation in
CCMM are presented to highlight the benefits obtained by assimilating chemical data
in CCMM. A case study of data assimilation to constrain emissions is also presented.
There are few examples to date of joint meteorological and chemical data assimilation
in CCMM and potential difficulties associated with data assimilation in CCMM are dis-20

cussed. As the number of variables being assimilated increases, it is essential to char-
acterize correctly the errors; in particular, the specification of error cross-correlations
may be problematic. In some cases, offline diagnostics are necessary to ensure that
data assimilation can truly improve model performance. However, the main challenge
is likely to be the paucity of chemical data available for assimilation in CCMM.25
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1 Introduction

Data assimilation pertains to the combination of modeling with observational data to
produce a most probable representation of the state of the variables considered. For
atmospheric applications, the objective of data assimilation is to obtain a better rep-
resentation of the atmosphere in terms of meteorological and atmospheric chemistry5

variables (particulate matter (PM) is included here as part of atmospheric chemistry).
Data assimilation has been used for many decades in dynamic meteorology to im-

prove weather forecasts and construct re-analyses of past weather. Several recent
reviews of data assimilation methods used routinely in meteorology are available (e.g.,
Kalnay, 2003; Navon, 2009; Lahoz et al., 2010). The use of data assimilation in atmo-10

spheric chemistry is more recent, because numerical deterministic models of atmo-
spheric chemistry have been used routinely for air quality forecasting only since the
mid 1990’s; previously, most air quality forecasts were conducted with statistical ap-
proaches (Zhang et al., 2012a). Data assimilation is also used in air quality since the
1990’s for re-analysis to produce air pollutant concentration maps (e.g., Elbern and15

Schmidt, 2001), inverse modeling to improve (or identify errors in) emission rates (e.g.,
Elbern et al., 2007; Vira and Sofiev, 2012; Yumimoto et al., 2012), boundary conditions
(e.g., Roustan and Bocquet, 2006) and model parameters (e.g., Barbu et al., 2009;
Bocquet, 2012). Regarding air quality re-analyses, the 2008/50 European Union (EU)
Air Quality Directive (AQD) suggests the use of modeling in combination with fixed20

measurements “to provide adequate information on the spatial distribution of the am-
bient air quality” (Borrego, in press; OJEU, 2008). An overview of data assimilation of
atmospheric species concentrations for air quality forecasting was recently provided
by Zhang et al. (2012b). We address here data assimilation in atmospheric chem-
istry models, which we define to include both atmospheric chemical transport models25

(CTM), which use meteorological fields as inputs (e.g., Seinfeld and Pandis, 2006),
and coupled chemistry meteorology models (CCMM), which simulate meteorology and
atmospheric chemistry jointly (Zhang, 2008; Baklanov et al., 2014). In particular, we
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are interested in the future prospects and potential difficulties associated with data
assimilation in CCMM.

In spite of available previous experience in data assimilation for meteorological mod-
eling on one hand and chemical transport modeling on the other hand, conducting data
assimilation in CCMM can be challenging because of interactions among meteorologi-5

cal and chemical variables. Assimilating large bodies of various meteorological and air
quality data may lead to a point of diminishing return. The objective of this review is to
present the current state of the science in data assimilation in atmospheric chemistry
models. Because of the limited experience available with CCMM, our review covers
primarily data assimilation in CTM and, to a lesser extent, in CCMM. The emphasis for10

future prospects is placed on the preferred approaches for CCMM and the challenges
associated with the combined assimilation of data for meteorology and atmospheric
chemistry. Potential difficulties are identified based on currently available experience
and recommendations are provided on the most appropriate approaches (methods and
data sets) for data assimilation in CCMM. Recommendations for method development15

are also provided since current efforts are ongoing in this area of geosciences.
We present in Sect. 2 an overview of the data assimilation techniques that are used

in atmospheric modeling, including techniques that are currently used operationally as
well as techniques that have been developed recently (or are under development) and
may be used operationally in the next few years. Next, their applications to atmospheric20

chemistry are presented in Sect. 3; most applications to date pertain to meteorology
and atmospheric chemistry separately, nevertheless a few recent applications pertain-
ing to CCMM are described. Data assimilation in the context of optimal network design
is also discussed because it may be used to improve the representativeness of obser-
vational monitoring networks. The observational data sets available for data assimila-25

tion are described in Sect. 4. Those include mainly satellite data, ground-based remote
sensing data (e.g., lidar data) and in situ observations; data gaps are identified and rec-
ommendations are made to improve the completeness of the observational networks in
the context of CCMM. The use of data indirectly related to model variables (e.g., satel-
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lite data on biomass fire intensity) is also discussed. Selected case studies of data
assimilation in CCMM are presented in Sect. 5 to illustrate the current state of the sci-
ence. A case study of data assimilation performed in the context of inverse modeling of
the emissions is also presented. Potential difficulties associated with data assimilation
in CCMM are discussed in Sect. 6. Finally, recommendations for future method devel-5

opment, method applications and pertinent data sets are provided in Sect. 7, along
with a discussion of future prospects for data assimilation in CCMM.

2 Methods of data assimilation in meteorology and atmospheric chemistry

2.1 Overview of the methods

Data assimilation natural playground has always been meteorology where methods10

have been very soon operationally implemented (Lorenc, 1986; Daley, 1991; Ghil and
Malanotte-Rizzoli, 1991; Kalnay, 2003; Evensen, 2009; Lahoz et al., 2010). Building on
established data assimilation methodology, assimilation of observations in offline CTM
has emerged in the late 90’s (Carmichael et al., 2008; Zhang et al., 2012a). Here, we
briefly describe the most common techniques used in both fields and comment on their15

differences when appropriate.
As far as spatial analysis is concerned, most common data assimilation methods

hardly differ. They are mainly based on statistical Gaussian assumptions on the er-
rors and the analysis relies on the simple but efficient Best Linear Unbiased Estimator
(BLUE). At a given time, BLUE strikes the optimal compromise between the observa-20

tions and a background estimate of the system state, often given by a previous fore-
cast. Such BLUE analysis can be performed solving for the gain matrix (that balances
the observations and the background) using linear algebra, a procedure called Opti-
mal/Statistical Interpolation (OI) (Fedorov, 1989; Daley, 1991), or it can be obtained
through a three-dimensional (3-D) variational spatial analysis, usually called 3-D-Var.25
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Within BLUE, it is mandatory to provide a priori statistics for both the observation errors
and the errors of the background.

When time is accounted for, these methods need to be generalized. In particular,
errors (or their statistics) attached to the best estimate must be propagated in time,
which leads to substantial hardships in both statistical interpolation and variational ap-5

proaches. The OI approach may be generalized to the (extended) Kalman filter (Ghil
and Malanotte-Rizzoli, 1991), while 3-D-Var is generalized to 4-D-Var (Penenko and
Obraztsov, 1976; Le Dimet and Talagrand, 1986; Talagrand and Courtier, 1987; Rabier
et al., 2000). Kalman filters and 3-D/4-D-Var can be combined to address deficiencies
of both methods: divergence of the filter and static covariance in variational methods10

(at least initially for 4-D-Var) (Lorenc, 2003).

2.1.1 Filtering approaches

The extended Kalman filter requires the propagation of the error covariance matrix of
rank the dimension of state-space, which can become unaffordable beyond a few hun-
dred. Yet, when the analysis happens to be strongly localized, the method becomes15

affordable such as in land surface data assimilation. For higher dimensional applica-
tions, it has been replaced by the reduced-rank Kalman filter and the ensemble Kalman
filter, and many variants thereof (Evensen, 1994; Verlaan and Heemink, 1997). In both
cases, the uncertainty is propagated through a limited number of modes that are fore-
cast by the model. This makes these methods affordable even with large dimensional20

models, especially because of the natural parallel architecture of such ensemble fil-
tering. Unfortunately, the fact that the ensemble is of finite size entails a deficient es-
timation of the errors mostly due to undersampling, which may lead to divergence of
the filter. This needs to be fixed and has been so through the use of inflation (Pham et
al., 1998; Anderson and Anderson, 1999) and localization (Houtekamer and Mitchell,25

2001; Hamill et al., 2001).
Inflation consists in additively or multiplicatively inflating the error covariance matri-

ces so as to compensate for an underestimation of the error magnitude. The inflation
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can be fixed or adaptive, or it can be rendered by physically-driven stochastic pertur-
bations of the ensemble members. Localization is made necessary when the finite size
of the ensemble whose variability is too small in high-dimensional systems makes the
analysis inoperative. Localization can be performed by either filtering the ensemble
empirical error covariance matrix and making it full-rank using a Schur product with5

a short-range correlation function (Houtekamer and Mitchell, 2001) or performing par-
allel spatially local analyzes (Ott et al., 2004). Those methodological advances have
been later tested and weighted with offline CTM (Hanea et al., 2004; Constantinescu
et al., 2007a, b; Wu et al., 2008).

2.1.2 Variational approaches10

Four-dimensional (4-D) variational data assimilation (4-D-Var) that minimizes a cost
function defined in space and in time, requires the use of the adjoint of the forward and
observation models, which may be costly to derive and maintain. It also requires the of-
ten complex modeling of the background error covariance matrix. Since linear algebra
operations on this huge matrix are prohibitive, the background error covariance matrix15

is usually modeled as a series of operators, whose correlation part can for instance
be approximated as a diffusion operator (Weaver and Courtier, 2001). This modeling
is even more so pregnant in air quality data assimilation when the statistics of the er-
rors on the parameters also need prior statistical assumptions (Elbern et al., 2007).
However, as a smoother, 4-D-Var could theoretically outperform ensemble Kalman fil-20

tering in nonlinear enough systems, if it was not for the absence of flow-dependence in
the background statistics (Bocquet and Sakov, 2013). It also easily accounts for asyn-
chronous observations that are surely met in an operational context.

Most operational 4-D-Var are strong-constraint 4-D-Var, which implies that the model
is assumed to be perfect. Accounting for model error and/or extending the length of the25

data assimilation window would require generalizing it to weak-constraint 4-D-Var (Pe-
nenko, 1996, 2009; Fisher et al., 2005). However, several difficulties arise, such as the
necessity to characterize model error and to significantly extend control space. On the
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contrary, filtering approaches quite easily incorporate model errors that nevertheless
still need to be assessed. 4-DVar has been rapidly evaluated and promoted in the con-
text of air quality forecasting (Fisher and Lary, 1995; Elbern and Schmidt, 1999, 2001;
Quélo et al., 2006; Chai et al., 2006; Elbern et al., 2007; Wu et al., 2008).

New data assimilation methods that have been recently developed are currently5

being tested in meteorological data assimilation such as hybrid ensemble/variational
schemes (Lorenc, 2003; Wang et al., 2007), particle filters (van Leeuwen, 2009; Boc-
quet et al., 2010) and ensemble variational schemes (Buehner et al., 2010a, b). How-
ever, the flow dependence of the methods in air quality is not as strong as in mete-
orology, and it remains to be seen whether those methods have a potential in offline10

atmospheric chemistry modeling and, in the long term, in online CCMM (Bocquet and
Sakov, 2013).

2.2 From state estimation to physical parameter estimation

As soon as time is introduced, differences appear between meteorological models and
offline CTM. For instance, the dynamics of a synoptic scale meteorological model is15

chaotic while the non-chaotic dynamics of offline CTM, even though possibly very
non-linear, is mainly driven by forcings, such as emissions and insolation. As a con-
sequence, a combined estimation of state and parameters might be an advantage in
CTM data assimilation. A possible difference is also in the proven benefit of model er-
ror schemes where stochastic parameterizations offer variability that most CTM lack.20

More generally, one should determine which parameters have a strong influence on the
forecasts and, at the same time, are not sufficiently known. Whereas pure initial value
estimation might be a satisfying answer for synoptic meteorological models, emission,
deposition, and transformation rates as well as boundary conditions are in competition
with initial values for CTM for medium- to long-range forecasts.25

With model parameter estimation, which is desirable in offline atmospheric data as-
similation, the filtering and variational methods come with two types of solution. The
(ensemble) filtering approach requires the augmentation of the state variables with the
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parameters (Ruiz et al., 2013). 4-D-Var easily lends itself to data assimilation since the
parameter variables can often be accounted for in the cost function (Penenko et al.,
2002; Elbern et al., 2007; Bocquet, 2012; Penenko et al., 2012). However, it is often re-
quired to derive new adjoint operators corresponding to the gradient of the cost function
with respect to these parameters if the driving mechanisms are not external forcings.5

Often, adjoint models and operators can nonetheless be obtained through a simplifying
approximation (Issartel and Baverel, 2003; Krysta and Bocquet, 2007; Bocquet, 2012;
Singh and Sandu, 2012).

2.3 Accounting for errors and diagnosing their statistics

All the above schemes rely on the knowledge of the error statistics for the observa-10

tions and the background (state or parameters). Yet, in a realistic context, it is always
imperfect. The performance of the data assimilation schemes is quite sensitive to the
specification of these errors. Algorithms relying on consistency check, cross validation
and statistical likelihood have been used in meteorology (Hollingsworth and Lönnberg,
1986; Desroziers and Ivanov, 2001; Chapnik et al., 2004; Desroziers et al., 2005) to15

better assess those pivotal statistics. Paradoxically, they have slowly percolated in air
quality data assimilation where they should be crucial given the uncertainty on most
forcings or the sparsity of observations for in situ concentration measurements.

The error covariance matrices can be parameterized with a restricted set of
hyper-parameters, and those hyper-parameters can be estimated through maximum-20

likelihood or L curve tests (Ménard et al., 2000; Davoine and Bocquet, 2007; Elbern
et al., 2007). Alternatively, with sufficient data, the whole structure of the error covari-
ance matrices in the observation space can be diagnosed using consistency matrix
identities; see for example Schwinger and Elbern (2010) who applied the approach of
Desroziers et al. (2005) to a stratospheric chemistry 4-D-Var system.25

As mentioned above, stochastic perturbations, as well as multi-physics parameteri-
zations (within ensemble methods) can be implemented to offer more variability and
counteract model error. More dedicated parameterizations of model error are pos-
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sible and occasionally bring in substantial improvement. Kinetic energy backscatter
(Shutts, 2005) or physical tendency perturbations at the ECMWF (Buizza et al., 1999)
are used in numerical weather predictions. In air quality, a subgrid statistical method
has been successful in quantitatively estimating and removing representativeness er-
rors (Koohkan and Bocquet, 2012).5

2.4 Nonlinearity and non-Gaussianity and the need for advanced methods

The aforementioned methods that are essentially derived from the BLUE paradigm
may be far from optimal when dealing with significant nonlinearities or significantly
non-Gaussian statistics. This surely happens when accounting for the convective scale
or for the hydrometeors in meteorology. It also occurs when modeling aerosols and as-10

similating aerosols/optical observations. It is also bound to happen whenever positive
variables are dealt with (which is the case for most of the variables in air quality). It
could become important when error estimates of species concentrations are commen-
surate with those concentrations. It will happen with online coupling of meteorology
and atmospheric chemistry. Possible solutions are a change of variables, the (related)15

Gaussian anamorphosis, maximum entropy on the mean inference, particles filters or
the use of variational schemes that account for nonlinearity well within the data assim-
ilation window (Bocquet et al., 2010).

2.5 Verification of the data assimilation process

Clearly, one would expect that model performance would improve with data assimila-20

tion. However, comparing model simulation results against the observations that have
been assimilated is only a test of internal consistency of the data assimilation process
and it cannot be construed as a verification of the improvement due to the data assim-
ilation. Verification must involve testing the model against observations that have not
been used in the data assimilation process. One may distinguish two broad categories25

of verification.

32243

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 32233–32323, 2014

Data assimilation in
atmospheric

chemistry models

M. Bocquet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

One approach is to test the result of a model simulation for a different time window
than that used for the data assimilation. Since data assimilation is used routinely in
meteorology to improve weather forecast, a large amount of work has been conducted
to develop procedures to assess the improvement in the forecast resulting from the data
assimilation. The model forecast with and without data assimilation may be tested in the5

forecast range (i.e., following the data assimilation window) either against observations
or against reanalyses. Numerical weather forecast centers perform such verification
procedures routinely and various perforamnce parameters have been developed to that
end. See for example Table 6 in Yang et al. (2012a) for a non-exhaustive list of such
parameters. Ongoing research continuously adds to such procedures (e.g., Rodwell et10

al., 2010; Ferro and Stevenson, 2011). Similar procedures may be used with CCMM
to evaluate the improvement provided by data assimilation in a forecasting mode (e.g.,
see case studies in Sects. 5.2 and 5.3).

Another approach to evaluate the improvement of model performance due to data
assimilation consists in comparing model performance for the data assimilation time15

window, but using a set of data that was not used in the assimilation process. One may
mention the following approaches:

– Leave-one-out approach: starting from n stations where observations are avail-
able, data from only n−1 stations are assimilated and the left-out station is used
for evaluation. The procedure is iterated n times, using a different station for eval-20

uation each time. This approach is, however, computationally expensive and in
some cases simply unfeasible. It may be used without the iteration process to
limit the computational burden, but the procedure is then sensitive to the selec-
tion of the station used for evaluation.

– Group selection approach: a subset of the stations where observations are avail-25

able (usually 15 to 25 % of the total number of stations) is selected at the be-
ginning of the verification process; those stations are not used in the data as-
similation process and are used only for model performance evaluation with and
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without data assimilation. Clearly, the group selection approach is sensitive to the
selection of that subset of stations.

The methods mentioned above can be applied in the case of different observational
sources (e.g., ground based observations, satellite data, lidar data). They can also be
applied in cases where data assimilation is used to conduct inverse modeling to esti-5

mate emissions or model parameters. For example, Koohkan et al. (2013) used both
an evaluation in a forecast mode and a leave-one-out approach to evaluate the im-
provement in model performance resulting from a revised emission inventory obtained
via inverse modeling.

One must note that the availability of chemical data is significantly less than that of10

meteorological data and, for all approaches, this paucity of chemical data will place
some limits on the depth of the verification of the improvement due to data assimilation
that can be conducted.

3 Applications

3.1 Data assimilation in CTM15

Many successful applications have demonstrated the benefits of data assimilation ap-
plied in CTM either with the purpose to produce re-analysis fields or with the focus on
improvement of accuracy of model inputs (IC, BC, and emissions) and forecasts. To
represent the current status and to illustrate the performance of data assimilation for
these purposes, we provide examples from regional and global studies, using differ-20

ent types of observational data, including in-situ, airborne, and satellite data. A range
of techniques have been used for estimating the best known estimate for the state
space variables, such as ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO)
or aerosols (particulate matter, PM), with the purpose either to conduct air quality as-
sessments or to improve the initial conditions for forecast applications. Elbern and25

Schmidt (2001) in one of the pioneer studies providing a chemical state analysis for
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the real case O3 episode with the use of a 4-D-Var based optimal analysis, EURAD
CTM model, with surface O3 observations and radiosonde measurements. Analyses
of the chemical state of the atmosphere obtained on the basis of a 6 h data assimi-
lation interval were validated with observational data withheld from the variational DA
algorithm. The authors showed that the initial value optimization by 4-D-Var provides5

a considerable improvement for the 6 to 12 h O3 forecast including the afternoon peak
values, but vanishing improvements afterwards. A similar conclusion was later reached
in other studies (e.g., Wu et al., 2008; Tombette et al., 2009; Wang et al., 2011; Curier
et al., 2012). Chai et al. (2006), with the STEM-2K1 model and 4-D-Var technique
applied to assimilate aircraft measurements during the TRACE-P experiment showed10

not only that adjusting initial fields after assimilating O3 measurements improves O3
predictions, but also that assimilation of NOy measurements improves predictions of
nitric oxide (NO), NO2, and peroxy acetyl nitrate (PAN). In this study, the concentration
upper bounds were enforced using the constrained limited memory-Broyden-Fletcher-
Goldfarb-Shanno-B (L-BFGS-B) to speed up the optimization process in the 4-D-Var15

and the same approach was later used also by Chai et al. (2007) for assimilating O3
measurements from various platforms (aircraft, surface, and ozone sondes) during the
International Consortium for Atmospheric Research on Transport and Transformation
(ICARTT) operations in the summer of 2004. Here, the ability to improve the predictions
against the withheld data was shown for every single type of observations. A final anal-20

ysis where all the observations were simultaneously assimilated resulted in a reduction
in model bias for O3 from 11.3 ppbv (the case without assimilation) to 1.5 ppbv, and in
a reduction of 10.3 ppbv in RMSE. It was also demonstrated that the positive effect in
air quality forecast for the near ground O3 was seen even out to 48 h after assimilation.

In addition to the variational data assimilation work, a number of atmospheric chem-25

istry data assimilation applications used sequential approaches, including various
Kalman filter methods. Coman et al. (2012) in their study used an Ensemble Square
Root Kalman Filter (EnSRKF) to assimilate partial lower tropospheric ozone columns
(0–6 km) provided by the IASI (Infrared Atmospheric Sounding Interferometer) instru-
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ment into a continental-scale CTM, CHIMERE, for July 2007. In spite of the fact that
IASI shows higher sensitivity for O3 in the free troposphere and lower sensitivity at the
ground, validations of analyses with assimilated O3 observations from ozone sondes,
MOZAIC aircraft and AIRBASE ground based measurements, showed 19 % reduction
of the RMSE and 33 % reduction of the bias at the surface. The more pronounced5

reduction of the errors in the afternoon than in the morning was attributed to the fact
that the O3 information introduced into the system needs some time to be transported
downward.

The limitations and potentials of different data assimilation algorithms with the aim
of designing suitable assimilation algorithms for short-range O3 forecasts in realistic10

applications have been demonstrated by Wu et al. (2008). Four assimilation methods
were considered and compared under the same experimental settings: optimal interpo-
lation (OI), reduced-rank square root Kalman filter (RRSQRT), ensemble Kalman filter
(EnKF), and strong-constraint 4-D-Var. The comparison results revealed the limitations
and the potentials of each assimilation algorithm. The 4-D-Var approach due to low de-15

pendency of model simulations on initial conditions leads to moderate performances.
The best performance during assimilation periods was obtained by the OI algorithm,
while EnKF had better forecasts than OI during the prediction periods. The authors
concluded that serious investigations on error modeling are needed for the design of
better DA algorithms.20

Data assimilation approaches have been used also with the purpose of combin-
ing the measurements and model results in the context of air quality assessments.
Candiani et al. (2013) formalized and applied two types of offline data assimilation ap-
proaches (OI and EnKF) to integrate the results of the TCAM CTM (Carnevale et al.,
2008) and ground-level measurements and produce PM10 re-analysis fields for a re-25

gional domain located in northern Italy. The EnKF delivered slightly better results and
more model consistent fields, which was due to the fact that, for EnKF, an ensemble of
simulations randomly perturbing only PM10 precursor emissions highlighted the impor-
tance of a consistent emission inventory in the modeling. EnKF approaches along with
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surface measurements have also been used for other models such as CUACE/dust (Lin
et al., 2008). The use of such air quality re-analyses in the context of air quality regu-
lations (e.g., assessment of air quality exceedances over specific areas, estimation of
human exposure to air pollution) has been discussed by Borrego et al. (2014).

Kumar et al. (2012) used a bias-aware optimal interpolation method (OI) in combi-5

nation with the Hollingsworth–Lönnberg method to estimate error covariance matrices
to perform re-analyses of O3 and NO2 surface concentration fields over Belgium with
the regional-scale CTM AURORA for summer (June) and winter (December) months.
Re-analysis results were evaluated objectively by comparison with a set of surface ob-
servations that were not assimilated. Significant improvements were obtained in terms10

of correlation and error for both months and both pollutants.
Satellite data have also been assimilated into CTM to improve performance in terms

of surface air pollutant concentrations. For example, Wang et al. (2011) assimilated
NO2 column data from OMI of the AURA satellite into the Polyphemus/Polair3D CTM
to improve air quality forecasts. Better improvements were obtained in winter than in15

summer due to the longer lifetime of NO2 in winter. Several studies have used aerosol
optical depth (AOD, also referred to as aerosol optical thickness or AOT) observations
along with CTM to obtain better air quality re-analyses. Some of these studies used
the OI technique along with models such as STEM (Adhikary et al., 2008; Carmichael
et al., 2009), CMAQ (Park et al., 2011, 2014), MATCH (Collins et al., 2001), and GO-20

CART (Yu et al., 2003). Other studies used variational approaches with models such as
EURAD (Schroeder-Homscheidt et al., 2010; Nieradzik and Elbern, 2006) and LMDz-
INCA (Generoso et al., 2007).

The question whether assimilation of lidar measurements instead of ground-level
measurements has a longer lasting impact on PM10 forecast, was investigated by Wang25

et al. (2013). They compared the efficiency of assimilating lidar network measurements
or AirBase ground network over Europe using an Observing System Simulation Exper-
iment (OSSE) framework and an OI assimilation algorithm with the POLAIR3D CTM
(Sartelet et al., 2007) of the air quality platform POLYPHEMUS (Mallet et al., 2007).
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Compared to the RMSE for one-day forecasts without DA, the RMSE between one-
day forecasts and the truth states was improved on average by 54 % by the DA with
data from 12 lidars and by 59 % by the DA with AirBase measurements. Optimizing
the locations of 12 lidars, the RMSE was improved by 57 %, while with 76 lidars the
improvement of the RMSE became as high as 65 %. For the second forecast days the5

RMSE was improved on average by 57 % by the lidar data assimilation and by 56 % by
the AirBase data assimilation, compared to the RMSE for second forecast days without
data assimilation. The authors concluded that assimilation of lidar data corrected PM10
concentrations at higher levels more accurately than AirBase data, which caused the
spatial and temporal influence of the assimilation of lidar observations to be larger and10

longer. Kahnert (2008) is another example of assimilation of lidar data by using the
MATCH model on a 3-D-Var framework.

Pollutant transport and transformations in CTM are strongly driven by uncertain ex-
ternal parameters, such as emissions, deposition, boundary conditions, and meteo-
rological fields, which explains why the impact of initial state adjustment is generally15

limited to the first day of the forecast. To address this issue, i.e., to improve the anal-
ysis capabilities and prolong the impact of DA on AQ forecasts, Elbern et al. (2007)
extended the 4-D-Var assimilation for adjusting emissions fluxes for 19 emitted species
with the EURAD mesoscale model in addition to chemical state estimates as usual
objective of DA. Surface in-situ observations of sulfur dioxide (SO2), O3, NO, NO2,20

and CO from the EEA AirBase database were assimilated and forecast performances
were compared for pure initial value optimization and joint emission rate/initial value
optimization for an August 1997 O3 episode. For SO2, the emission rate optimization
nearly perfectly reduced the emission induced bias of 10 ppb after two days of simula-
tion with pure initial values optimization, and reduced RMS errors by about 60 %, which25

demonstrated the importance of emission rate rather than initial value optimization. In
the case of photolytically active species, the optimization of emission rates was shown
to be considerably more challenging; for O3, it was attributed mostly to the coarse
model horizontal resolution of 54 km. The authors concluded that grid refinement with
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4-D-Var applied after introducing nesting techniques should enable more efficient use
of NOx observations and decrease bias and RMSE for a forecast longer than 48 h.

In limited area modeling, experiments concerning the relative importance of the initial
model state and emissions of primary pollutants have been carried out with the SILAM
chemistry transport model (http://silam.fmi.fi), which includes a subsystem for varia-5

tional data assimilation. Both 4-D- and 3-D-Var methods are implemented and share
the common observation operators, covariance models and minimization algorithms.
The main features of the assimilation system are described by Vira and Sofiev (2012,
2014). In addition to model initialization, the 4-D-Var mode can be set to optimize emis-
sion rates either via a location-dependent scaling factor or an arbitrary emission forcing10

restricted to a single point source. The former can be used for optimizing emission in-
ventories of anthropogenic or natural pollutants (see case study 5.4), while the latter
has been developed especially for source term inversion in volcanic eruptions.

The data assimilation system has been run with both satellite and in-situ measure-
ments. European-wide in-situ observations are assimilated routinely to produce daily15

analysis fields of gas-phase pollutants, while satellite observations have been used
mainly for emission-related case studies. The assimilation of sulfur oxide observations
from the Airbase database showed that for such compounds the effect of initial state de-
termination, whether with 3-D- or 4-D-Var, tends to disappear within 10–12 h, whereas
the effect of emission correction rather starts after a few hours following the assimila-20

tion. The 3-D-Var assimilation mode, while less versatile then 4-D-Var, benefits from
very low computational overhead. The adjoint code, required by 4-D-Var, is available
for all processes except aerosol chemistry.

Boundary conditions are also one of the crucial parameters. Roustan and Bocquet
(2006) used inverse modeling for optimizing boundary conditions for gaseous elemen-25

tal mercury (GEM) dispersion modeling. They applied the adjoint techniques using
the POLAIR3D CTM with Petersen et al. (1995) mercury (Hg) chemistry model and
available GEM observations at 4 EMEP stations. They showed that using assimilated
boundary conditions improved GEM forecasts over Europe for all monitoring stations,
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whereas improvement for the two EMEP stations that provided the assimilated data
was significant. The authors also extended the inverse modeling approach to cope
with a more complex Hg chemistry. The generalization of the adjoint analysis per-
formed with the Petersen model, showed no significant improvement for the simulation
with the complex scheme model as compared to the complex scheme model without5

assimilated boundary conditions. The authors ascribed this result to the absence of
well-known boundary conditions for the oxidized Hg species. They also concluded that
due to the insufficient Hg observation network it was not possible to take the full benefit
of the approach used in the study, for example, they were not able to use the inverse
modeling of GEM to improve the sinks and emissions inventories.10

The possibility to use data assimilation for establishing the initial state of the model as
well as for improving the emission input data connects data assimilation to the source
identification problem, either in the context of accidental releases or for evaluating and
improving emission inventories. Numerous studies used data assimilation approaches
for estimating or improving emission inventories. Mijling and van der A (2012) pre-15

sented a new algorithm (DECSO) specifically designed to use daily satellite observa-
tions of column concentrations for fast updates of emission estimates of short-lived at-
mospheric constituents. The algorithm was applied for NOx emission estimates of East
China, using the CHIMERE model on a 0.25◦ resolution together with tropospheric
NO2 column retrievals of the OMI and GOME-2 satellite instruments (see Table 1).20

The important advantage of this algorithm over techniques using 4-D-Var or EnKF
is the calculation speed of the algorithm, which facilitates for example its operational
application for NO2 concentration forecasting at mesoscale resolution. The DECSO
algorithm needs only one forward model run from a CTM to calculate the sensitivity
of concentration to emission, using trajectory analysis to account for transport away25

from the source. By using a Kalman filter in the inverse step, optimal use of the a priori
(background) knowledge and the newly observed data is made. Tests showed that the
algorithm is capable of reconstructing new NOx emission scenarios from tropospheric
NO2 column concentrations and detecting new emission sources such as power plants
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and ship tracks. Using OMI and GOME-2 data, the algorithm was able to detect emis-
sion trends on a monthly resolution, such as during the 2008 Beijing Olympic Games.
Furthermore, the tropospheric NO2 concentrations calculated with the new emission
estimates showed better agreement with the observed concentrations over the period
of data assimilation, both in space and time, as expected, facilitating the use of the5

algorithm in operational air quality forecasting.
Koohkan et al. (2013) have focused on the estimation of emission inventories for dif-

ferent VOC species via inverse modeling. For the year 2005, they estimated 15 VOC
species over western Europe: five aromatics, six alkanes, two alkenes, one alkyne
and one biogenic diene. For that purpose, the Jacobian matrix was built using the10

POLAIR3D CTM. In-situ ground-based measurements of 14 VOC species at 11 EMEP
stations were assimilated, and for most species the retrieved emissions lead to a signif-
icant reduction of the bias. The corrected emissions were partly validated with a fore-
cast conducted for the year 2006 using independent observations. The simulations
using the corrected emissions often led to significant improvements in CTM forecasts15

according to several statistical indicators.
Barbu et al. (2009) applied a sequential data assimilation scheme to a sulfur cycle

version of the LOTOS–EUROS model using ground-based observations derived from
the EMEP database for 2003 for estimating the concentrations of two closely related
chemical components, SO2 and sulfate (SO=

4 ), and to gain insight into the behavior of20

the assimilation system for a multicomponent setup in contrast to a single component
experiment. They performed extensive simulations with EnKF in which solely emis-
sions (single or multi component), or a combination of emissions and the conversion
rates of SO2 to SO=

4 were considered uncertain. They showed that two issues are cru-
cial for the assimilation performance: the available observation data and the choice of25

stochastic parameters for this method. The modeling of the conversion rate as a noisy
process helped the filter to reduce the bias because it provides a more accurate de-
scription of the model error and enlarges the ensemble spread, which allows the SO=

4
measurements to have more impact. They concluded that one should move from single
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component applications of data assimilation to multi-component applications, but the
increased complexity associated with this move requires a very careful specification of
the multi-component experiment, which will be a main challenge for the future.

Regarding other model input parameters, Storch et al. (2007) is a rare example who
used the inverse analysis techniques for the estimation of micro-meteorological param-5

eters required for the characterization of atmospheric boundary layers. Bocquet (2012)
focused on the retrieval of single parameters, such as horizontal diffusivity, uniform dry
deposition velocity, and wet-scavenging scaling factor, as well as on joint optimization
of removal-process parameters and source parameters, and on optimization of larger
parameter fields such as horizontal and vertical diffusivities and the dry-deposition ve-10

locity field. In that study, the Polair3D CTM of the Polyphemus platform was used and
a fast 4-D-Var scheme was developed. The inverse modeling system was tested on
the Chernobyl accident dispersion event with measurements of activity concentrations
in the air performed in Western Europe with the REM database following Brandt et
al. (2002). Results showed that the physical parameters used so far in the literature15

for the Chernobyl dispersion simulation are partly supported by that study. The ques-
tion of deciding whether such an inversion modeling is merely a tuning of parameters
or a retrieval of physically meaningful quantities was also discussed. From that study,
it appears that the reconstruction of the physical parameters is a desirable objective,
but it seems reasonable only for the most sensitive fields or a few scalars, while for20

large fields of parameters, regularization (background) is needed to consider avoiding
tuning.

The benefit of data assimilation is also significant for global applications. Schut-
gens et al. (2010) presented the impact of the assimilation of Aerosol Robotic Network
(AERONET) AOD and the Angström exponent (AE) using a global assimilation system25

for the aerosol model SPRINTARS (Takemura et al., 2000, 2002, 2005). The appli-
cation was based on a Local EnKF approach. To obtain the ensemble of the model
simulations different emission scenarios, which were computed randomly for sulfate,
carbon, and desert dust (i.e., the aerosol species that are considered by SPRINTARS),
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were used. Simulated fields of AOD and AE from these experiments were compared
to a standard simulation with SPRINTARS (no assimilation) and independent obser-
vations at various geographic locations. In addition to the AERONET sites, data from
SKYNET observations (South-East Asia) and MODIS Aqua observations of Northern
America, Europe and Northern Africa were used for the validation. The authors show5

the benefit of the assimilation of AOD compared to the simulation without considering
the measurement data. It was also pointed out that the usefulness of the assimilation
of AE is only limited to high AOD (> 0.4) and low AE cases.

Yumimoto et al. (2013) also used SPRINTARS but presented a different data as-
similation system based on 4-D-Var. The aim of that study was to optimize emission10

estimates, improve 4-D descriptions, and obtain the best estimate of the climate effect
of airborne aerosols in conjunction with various observations. The simulations were
conducted using an offline and adjoint model version that was developed in order to
save computation time (about 30 %). Comparing the results with the online approach
for a 1 year simulation led to a correlation coefficient of r > 0.97 and an absolute value15

of normalized mean bias NMB < 7% for the natural aerosol emissions and AOD of in-
dividual aerosol species. The capability of the assimilation system for inverse modeling
applications based on the OSSE framework was also investigated in that study. The
authors showed that the addition of observations over land improves the impact of the
inversion more than the addition of observations over the ocean (where there are fewer20

major aerosol sources), which indicates the importance of reliable observations over
land for inverse modeling applications. Observation data over land provide information
from around the source regions. The authors also showed that, for the inversion exper-
iments, the aerosol classification is very important over regions where different aerosol
species originate from different sources and that the fine- and coarse-mode AODs are25

inadequate for identifying sulfate and carbonaceous aerosols, which are among the
major tropospheric aerosol species.

In general, the assimilation of different species has a strong influence on both assim-
ilated and non-assimilated species through the use of interspecies error correlations
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and through the chemical model. Over the past few years, numerous measurements
of different chemical species have been made available from satellite instruments.
Miyazaki et al. (2012) combined observations of chemical compounds from multiple
satellites through an advanced EnKF chemical data assimilation system. NO2, O3, CO,
and HNO3 measurements from the OMI, TES, MOPITT, and MLS satellite instruments5

(see Table 1) were assimilated into the global CTM CHASER (Sudo et al., 2002). The
authors demonstrated a strong improvement by assimilating multiple species as the
data assimilation provides valuable information on various chemical fields. The analy-
sis (OmF; Observation minus Forecast) showed a significant reduction of both bias (by
85 %) and RMSE (by 50 %) against independent data sets when data assimilation was10

used. The authors showed that the combination of different observations using also
multispecies via data assimilation is a very effective way to remove systematic model
errors. It was pointed out that the chemical data assimilation requires observations
with sufficient spatial and temporal resolution to capture the heterogeneous distribu-
tion of tropospheric composition. This can be achieved through the combined use of15

satellite and surface in-situ data. Surface data may provide strong constraints on the
near-surface analysis at high resolution in both space and time.

San Jose and Pérez Carmaño of the Technical University of Madrid (UPM) also
performed a multi-species data assimilation with a CTM. In their work, NO2 and O3
data from SCanning Imaging Absorption SpectroMeter for Atmospheric CHartogra-20

phY (SCIAMACHY) were assimilated into a simulation conducted with the Commu-
nity Multiscale Air Quality CTM (CMAQ) of the U.S. Environmental Protection Agency.
SCIAMACHY makes measurements in both nadir and limb modes, which allows the
subtraction of stratospheric O3 from the total O3 column measurements to obtain tro-
pospheric O3 column estimates. Figure 1a shows an example of O3 SCIAMACHY data25

for 1 August 2007. CMAQ was used here in combination with MM5 for the meteorologi-
cal fields and applied to two domains covering the Iberian Peninsula with a grid spacing
of 27 km and the central region of Spain including the Madrid metropolitan area with
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a grid spacing of 9 km. A vertical resolution with 23 layers was used in both MM5 and
CMAQ. Results are presented here for the episode of 1 to 8 August 2007 (see Fig. 1b).

The vertical profiles of NO2 and O3 were assimilated into the CMAQ simulation for
each grid cell using the Cressman (1959) method. A comparison of model simulation
results with and without data assimilation showed a slight improvement from 0.7515

to 0.754 in the correlation between the hourly model simulation results and O3 con-
centrations available from the surface monitoring network. The results show important
differences in the Madrid region with the most important ones (up to 22 µgm−3) being
located over downtown Madrid and typically decreasing away from the city. A scat-
ter diagram of the simulated and measured O3 concentrations averaged over the 2210

monitoring stations of the Madrid area is shown in Fig. 1c.

3.2 Data assimilation in coupled chemistry meteorology models

Since CCMM are more recent than CTM, there are fewer applications of data assimila-
tion using the former. Nevertheless, there has been a growing number of applications
with CCMM over the past few years and several of those are summarized below. In15

addition, three case studies are presented in greater detail in Sect. 5. Past applications
of data assimilation in CCMM may be grouped into two major categories: applications
that used the 4-D-Var data assimilation system of the original meteorological model
and applications that used a variety of techniques (3-D-Var, Kalman filters) with the
CCMM. Examples of the former approach include applications using the Integrated20

Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts
(ECMWF), whereas examples of the latter approach include applications using WRF-
Chem. One may also distinguish the assimilation of chemical data in CCMM with and
without feedbacks between the chemical and meteorological variables. Clearly, data
assimilation in a CCMM with chemistry/meteorology feedbacks is more interesting; it25

may, however, be more challenging, as discussed in Sect. 6.
One of the first applications of data assimilation with a CCMM is the assimilation

of vertical profiles of ozone (O3) concentrations obtained with the AURA/MLS into the
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ARPEGE/MOCAGE integrated system (Semane et al., 2009). ARPEGE is a mesoscale
meteorological model and MOCAGE is the CTM that was coupled to ARPEGE for that
application; both models are developed and used by Meteo France. ARPEGE simu-
lated O3 transport and the O3 concentrations were subsequently modified at prescribed
time steps with MOCAGE to account for O3 chemistry. Data assimilation is performed5

routinely with ARPEGE using 4-D-Var and that approach was used to assimilate the O3
data into ARPEGE. The data assimilation resulted in better forecasting of wind fields in
the lower stratosphere.

This general approach is also used in the chemical data assimilation conducted at
ECMWF with IFS with coupled chemistry since a 4-D-Var data assimilation system is10

operational in IFS. A presentation of this data assimilation system and its application
for re-analyses at ECMWF is presented in Sect. 5.1.

Flemming and Innes (2013) have assimilated SO2 data from GOME2 using 4-D-Var
into a version of IFS adapted for SO2 fate and transport. SO2 oxidation was treated
with a first-order gas-phase reaction with hydroxyl (OH) radicals and its atmospheric15

removal was treated with a first-order scavenging rate. The approach was applied to
the SO2 plume of volcanic eruptions. The simulation results showed improvements
following data assimilation for the plume maximum concentrations but there was a ten-
dency to overestimate the plume spread, which may be due to predefined horizontal
background error correlations.20

Innes et al. (2013) used data assimilation into IFS coupled to the MOZART3 CTM to
produce reanalysis of atmospheric concentrations of four chemical species, CO, NOx,
O3, and formaldehyde (HCHO), over an 8 yr period. The 4-D-Var system of IFS was
used for the assimilation of data obtained from 8 satellite-borne sensors for CO, NO2
and O3. HCHO satellite data were not assimilated because retrievals were considered25

insufficient. In this application, the influence of those chemical species on meteorolog-
ical variables was not taken into account, which is a major difference with the previous
application of Semane et al. (2009). The data assimilation results showed notable im-
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provements for CO and O3, but little effect for NO2, because of its shorter lifetime
compared to those of CO and O3.

Flemming et al. (2011) used IFS coupled with three distinct O3 chemistry mecha-
nisms, including a linear chemistry, the MOZART3 chemistry (see above), and the TM5
chemistry. Using the IFS 4-D-Var system, they assimilated O3 data from four satellite-5

borne sensors (OMI, SCIAMACHY, MLS, and SBUV2) to improve the simulation of
the 2008 stratospheric O3 hole. Notable improvements were obtained with all three O3
chemistry mechanisms.

An earlier application was conducted by Engelen and Bauer (2011) with the Ra-
diative Transfer for the Television Infrared Observation Satellite Operational Vertical10

Sounder (RRTOV) model of IFS, where CO2 was treated as a tracer. A variational bias
correction was performed with radiance data from AIRS and IASI. The improvement in
the radiative transfer led to improved temperature values.

Several applications using data assimilation have been conducted with WRF-Chem.
Scientists at the National Center for Atmospheric Research (NCAR) have assimilated15

data into WRF-Chem. The Goddard Aerosol Radiation and Transport (GOCART) mod-
ule was used; it includes several PM species, but does not treat gas-phase PM interac-
tions. Liu et al. (2011) assimilated AOD from MODIS to simulate a 2010 dust episode in
Asia using gridpoint statistical interpolation (GSI) (Wu et al., 2002; a 3-D-Var method).
The results of the re-analyses showed improvement in AOD, when compared to MODIS20

(as expected) and CALIOP (as a cross-validation), and in surface PM10 concentrations
when compared to AERONET measurements. Chen et al. (2014) used a similar ap-
proach to improve simulations of surface PM2.5 and organic carbon (OC) concentra-
tions during a wild biomass fire event in the United States. Meteorological data (sur-
face pressure, 3-D wind, temperature and moisture) were assimilated in one simulation,25

whereas AOD MODIS data were in addition assimilated in another simulation, both us-
ing 6 h intervals. The AOD assimilation significantly improved OC and PM2.5 surface
concentrations when compared to measurements from the Interagency Monitoring of
PROtected Visual Environments (IMPROVE) network. Jiang et al. (2013) also used
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GSI 3-D-Var with WRF-Chem, but assimilated surface PM10 concentrations instead of
satellite data. Their application over China showed improvement in PM10 concentra-
tions; however, the benefit of the data assimilation diminished within 12 h because of
the effect of atmospheric transport (vertical mixing and horizontal advection), thereby
suggesting the importance of assimilating PM data aloft (e.g., AOD) and/or correcting5

emissions, which are the forcing function for PM concentrations. Accordingly, Schwartz
et al. (2012) used GSI 3-D-Var to assimilate both AOD from MODIS and PM2.5 surface
concentrations into WRF-Chem to improve simulated PM2.5 concentrations over North
America. The use of 6 h re-analyses for initialization led to notable improvements when
both satellite and surface data were assimilated. More recently, Schwartz et al. (2014)10

assimilated the same AOD and PM2.5 surface concentration data using two additional
methods: an ensemble square-root Kalman filter (EnSRF) and a hybrid ensemble 3-D-
Var method. All three methods led to mostly improved forecasts, with the hybrid method
showing the best performance and 3-D-Var generally showing better performance than
EnSRF. However, the ensemble spread was considered insufficient and it was antic-15

ipated that a larger spread would lead to better results for the ensemble and hybrid
methods.

Scientists at the National Oceanic and Atmospheric Administration (NOAA) also
used the GSI 3-D-Var method to assimilate data into WRF-Chem. Their version of
WRF-Chem offered a full treatment of gas-phase chemistry and PM. Pagowski et20

al. (2010) assimilated both O3 and PM2.5 surface concentrations over North Amer-
ica. Model performance improved, but the benefits of data assimilation lasted only for
a few hours. Pagowski and Grell (2012) subsequently compared 3-D-Var and EnKF to
assimilate PM2.5 surface concentrations into WRF-Chem. They concluded that better
performance was obtained with EnKF. A WRF-Chem case study with assimilation of25

surface data is presented in Sect. 5.2.
Saide et al. (2012a) developed the adjoint of the mixing/activation parameterization

for the activation of aerosols into cloud droplets of WRF-Chem and, using 3-D-Var
data assimilation of MODIS data, they improved aerosol simulated concentrations. The
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important result in that work was the ability to improve aerosol simulations using the
assimilation of cloud droplet number concentration data, which is only possible due to
the coupled nature of WRF-Chem that integrates aerosol indirect effects into the fore-
casts. Saide et al. (2013) also used a modified GSI 3-DVar to assimilate MODIS AOD
data into WRF-Chem for a sectional aerosol treatment and using the adjoint of the5

Mie computation for the AOD from aerosol concentrations. Improvements in aerosol
concentrations were obtained at most locations when compared to measurements at
surface monitoring sites in California and Nevada. The study found that observationally
constrained AOD retrievals resulted in improved performance compared to the raw re-
trievals and that the use of multiwavelength AOD satellite data led to improvements in10

the simulated aerosol size distribution. This assimilation tool was further used to show
that future geostationary missions are expected to improve air quality forecasts consid-
erably when included into current systems that assimilate MODIS retrievals (Saide et
al., 2014). Satellite data assimilation into WRF-Chem is presented as a case study in
Sect. 5.3.15

Data assimilation has been conducted with other CCMM. For example, Messina et
al. (2011) used OI to assimilate O3 and NO2 data into BOLCHEM, a one-way CCMM,
applied over the Po Valley. They used an OSSE approach and showed that NO2 data
assimilation was successful in correcting errors due to NOx emission biases. Further-
more, the benefit of the data assimilation could exceed one day. However, the assim-20

ilation of NO2 data increased the O3 bias at night because of the nocturnal O3/NO2
chemistry. The combination of O3 and NO2 assimilation helped resolve that night-time
issue; however, the benefit disappeared after a few hours due to the short lifetime of
those air pollutants as discussed in Sect. 3.1.

3.3 Optimal monitoring network design25

Atmospheric chemistry (including PM) monitoring networks should ideally be designed
according to a rational criterion. Such a criterion (called the science criterion) would
assess the ability of the network to provide information in order to optimally estimate
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physical quantities. The overall design criterion could also account for the investment
and maintenance costs of the network or for the technical sustainability and reliability of
stations (Munn, 1981). This overall design criterion that mixes all of these aspects can
be devised in the form of an objective scalar function evaluating network configuration.

The science criterion often judges the ability of the network to estimate instanta-5

neous or average concentrations, or the threshold exceedance of any relevant regu-
lated species. The estimation could rely on basic interpolation, more advanced kriging,
or data assimilation techniques (Müller, 2007). The latter would come with a very high
numerical cost, since one would have to perform a double (nested) optimization on the
data assimilation control variables, as well as on the potential station locations.10

These ideas have been used in air quality to reduce an already existing ozone mon-
itoring network (Nychka and Saltzman, 1998; Wu et al., 2010) or to extend this net-
work (Wu and Bocquet, 2011). Ab nihilo station deployment, extension and reduction
of networks lead to problems of different nature. For instance, when extending a net-
work one is forced to guess physical quantities and their statistics on the new sta-15

tions to be gauged, requiring a costly observation campaign or a clever extrapolation
from existing sites to tentative sites. The mathematical criterion to evaluate the skills
of the modeling system for a given network, beyond the choice of the observed phys-
ical quantities, also calls for a choice of performance metrics. Many attractive criteria
have been proposed: root mean square errors of network-based estimation of the field,20

information-theoretical based criteria, etc. Such criteria have been investigated in at-
mospheric chemistry in many studies conducted by environmental statisticians, more
recently for instance by Fuentes et al. (2007) and Osses et al. (2013). Nowadays, the
network design issue also concerns the sparse ground networks of greenhouse gases
monitoring at meso and global scales (Rayner, 2004; Lauvaux et al., 2012), which in25

our context can be seen mostly as tracers of atmospheric transport.
In meteorology, optimal network design is often studied in an Observing System Sim-

ulation Experiment context, where the impacts of new predefined observations (e.g.,
data retrieval from a future satellite) are evaluated rather than the optimal locations
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of future stations. Nevertheless, the dynamic placement of new and informative ob-
servations (targeting) has been investigated theoretically (Berliner et al., 1999; and
many since then) and experimentally in field campaigns such as the Fronts and At-
lantic Storm-Track Experiment (FASTEX) of Meteo France (http://www.cnrm.meteo.fr/
dbfastex/ftxinfo/) and the Observing System Research and Predictability Experiment5

of the World Meteorological Organization (THORPEX; http://www.wmo.int/pages/prog/
arep/wwrp/new/THORPEXProjectsActivities.html). Although these adaptive observa-
tions were shown to be very informative in the case of severe events, they are based
on monitoring flights and hence are very costly, whereas other observations are much
more abundant and cheaper.10

Targeting has been little investigated in atmospheric chemistry, but recent studies
have demonstrated its potential, especially in an accidental context (Abida and Boc-
quet, 2009). It would certainly be interesting to use a coupled chemical/meteorological
targeting system since targeting of concentration observations could also require me-
teorological observations at the same location for a proper assimilation of chemical15

concentrations into a CCMM.

4 Observational data sets

Observational data sets available for data assimilation and model performance eval-
uation include mainly in situ observations, satellite data, and ground-based remote
sensing data (e.g., lidar data). Air quality observation systems include routine surface-20

based ambient air and deposition networks, satellites, field campaigns, and programs
for monitoring background concentrations and long-range transport of pollutants.

32262

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.cnrm.meteo.fr/dbfastex/ftxinfo/
http://www.cnrm.meteo.fr/dbfastex/ftxinfo/
http://www.cnrm.meteo.fr/dbfastex/ftxinfo/
http://www.wmo.int/pages/prog/arep/wwrp/new/THORPEXProjectsActivities.html
http://www.wmo.int/pages/prog/arep/wwrp/new/THORPEXProjectsActivities.html
http://www.wmo.int/pages/prog/arep/wwrp/new/THORPEXProjectsActivities.html


ACPD
14, 32233–32323, 2014

Data assimilation in
atmospheric

chemistry models

M. Bocquet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.1 Non-satellite observations

4.1.1 Routine air quality monitoring in North America, Europe, and worldwide

Dense networks of air quality monitors are available in North America and Europe.
They provide measurements with near real-time availability and a short one-hourly
averaging period. These aspects, together with the link to health policy, make these5

network observations especially suitable for chemical data assimilation applications.
In Europe, air quality observations are made available through the Air Quality

Database (AirBase) of the European Environmental Agency (EEA). Access is pro-
vided to validated surface data, with a delay of one to two years. These validated
datasets are used primarily for assessments (e.g., EEA, 2013). The delivery of (un-10

validated) data in near-real time through EEA for data assimilation purposes is receiv-
ing much attention recently and is under development, stimulated by the development
of the EU Copernicus Atmosphere Service. Key species provided by AirBase (http:
//www.eea.europa.eu/themes/air/air-quality/map/airbase) are PM10, O3, NO2, NO, CO,
and SO2. Apart from these, measurements are available for ammonium, heavy met-15

als (lead), benzene, and others. Related to more recent EC directives (e.g. Directive
2008/50/EC), member states are developing networks to measure PM2.5, but the num-
ber of sites with PM2.5 capability is presently significantly smaller (slightly more than
half) than those for PM10.

It should be noted that PM measurements are often provided on a daily-mean ba-20

sis, in contrast to O3 and NO2, for which hourly values are reported. This is not ideal
for data assimilation purposes, where instantaneous observations are preferred. The
classification of the surface observations and representativeness of measurements for
larger areas is important, in order to allow meaningful comparisons of the observations
with air quality models (e.g., Joly and Peuch, 2012). For the measurements of NO225

it should be realized that in particular sensors with molybdenum converters make the
measurement also sensitive to other oxidized nitrogen compounds such as PAN and
nitric acid (HNO3) (e.g., Steinbacher et al., 2007).
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In the context of the Convention of Long-Range Transboundary Air Pollution, the Eu-
ropean Monitoring and Evaluation Programme (EMEP) provides data (http://www.nilu.
no/projects/ccc/emepdata.html) on a selection of sites in Europe, for O3, NOx, VOC,
SO2, Hg, and aerosol (PM10), including additional information on carbonaceous PM
and secondary inorganic aerosol, which is of use for model evaluation in Europe (e.g.5

EMEP, 2012; Tørseth et al., 2012). Atmospheric deposition is measured for several
chemical species in the EMEP network.

In North America, surface measurements of O3 and PM2.5 are accessible through
the U.S. EPA’s AIRNow gateway (http://www.airnowgateway.org). For a comprehensive
description of air quality observation systems over North America, we refer the reader10

to a report (NSTC, 2013), which is available at http://www.esrl.noaa.gov/csd/AQRS/
reports/aqmonitoring.pdf. This report focuses on observations in the United States, but
also provides succinct information on observations in Canada and Mexico.

Over 1300 surface stations measure hourly concentrations of O3 using a UV absorp-
tion instrument (Williams et al., 2006). The instrument error is bounded by ±2% of the15

concentration. The majority of the measurement sites are located in urban and subur-
ban settings. The highest density of monitors is found in the eastern US, followed by
California and eastern Texas, while observations are relatively sparse in the center of
the continent. Hourly PM2.5 concentrations are measured at over 600 locations using
Tapered Element Oscillating Microbalance instruments (TEOM, Thermo Fisher, Con-20

tinuous particulate TEOM monitor, Series 1400ab, product detail, 2007, available at
http://www.thermo.com/com/cda/product/detail/1,10122682,00.html). The uncertainty
of PM2.5 measurements is calculated as 1.5 µgm−3 plus an inaccuracy of 0.75 % times
the species concentration. We caution that much larger measurement errors can oc-
cur, depending on meteorological conditions, because of the volatility of some aerosol25

species (Hitzenberger et al., 2004). Geographic distribution of PM2.5 measuring sites
is similar to that of the O3 sites.

32264

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.nilu.no/projects/ccc/emepdata.html
http://www.nilu.no/projects/ccc/emepdata.html
http://www.nilu.no/projects/ccc/emepdata.html
http://www.airnowgateway.org
http://www.esrl.noaa.gov/csd/AQRS/reports/aqmonitoring.pdf
http://www.esrl.noaa.gov/csd/AQRS/reports/aqmonitoring.pdf
http://www.esrl.noaa.gov/csd/AQRS/reports/aqmonitoring.pdf
http://www.thermo.com/com/cda/product/detail/1,10122682,00.html


ACPD
14, 32233–32323, 2014

Data assimilation in
atmospheric

chemistry models

M. Bocquet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Concentrations of the remaining criteria pollutants (NO2, CO, SO2, Pb, and PM10)
are measured at several hundred locations across the continent at varying frequencies
and averaging periods.

The IMPROVE network measures major components of PM2.5 (sulfate, nitrate, or-
ganic and elemental carbon fractions, and trace metals) at over 100 locations in na-5

tional parks and in rural settings. Complementary aerosol measurements in urban and
suburban locations are available at more than 300 EPA’s STN speciation sites. IM-
PROVE and STN sites typically collect 24 h samples every three days. Since those
PM2.5 samples are collected on filters and need to be sent to analytical laboratories
for analysis, data are not available in near real-time. Continuous aerosol species con-10

centrations are only occasionally measured by the industry-funded SEARCH network,
which operates eight sites in the southeastern US.

In addition, toxics are monitored by the NATTS network sampling at 27 locations for
24 h every six days. The NADP, IADN, and CASTNET networks track atmospheric wet
and dry deposition.15

At the global scale, monitoring of atmospheric chemical composition was organized
by the World Meteorological Organization (WMO) Global Atmospheric Watch (GAW)
program about 25 years ago. The GAW program currently addresses six classes of vari-
ables (O3, UV radiation, greenhouse gases, aerosols, selected reactive gases, and pre-
cipitation chemistry). The surface-based GAW observational network comprises global20

and regional stations, which are operated by WMO members. These stations are com-
plemented by various contributing networks. Currently, the GAW program coordinates
activities and data from 29 global stations, more than 400 regional stations, and about
100 stations operated by contributing networks. All observations are linked to common
references and the observational data are available in the designated World Data Cen-25

ters. Information about the GAW stations and contributing networks is summarized in
the GAW Station Information System (GAWSIS; http://gaw.empa.ch/gawsis/).
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4.1.2 Other surface-based, balloon, and aircraft observations

Other types of observations that can be assimilated into atmospheric models include
surface-based remote sensing data, such as lidar data, balloon-borne souding sys-
tems (sondes), and aircraft observations.

5

Lidar data

The GAW Aerosol Lidar Observation Network (GALION) provides information on
the vertical distribution of aerosols through advanced laser remote sensing in a net-
work of ground-based stations. Several regional lidar networks, such as the Asian Dust10

and Aerosol Lidar Observation Network (AD-Net), the Latin America Lidar Network
(ALINE), the Commonwealth of Independent States (Belarus, Russia and Kyrgyz Re-
public) LIdar NETwork (CIS-LINET, the Canadian Operational Research Aerosol Lidar
Network (CORALNet), CREST funded by NOAA and run by the City University of New
York covering eastern North America, the MicroPulse Lidar NETwork (MPLNET) op-15

erated by NASA, the European Aerosol Research Lidar Network (EARLINET), and
the Network for the Detection of Atmospheric Composition Change (NDACC), Global
Stratosphere are participants in GALION. Some of these regional lidar networks are
described in greater detail below.

MPLNET is a global lidar network of 22 stations operated by NASA with lidars collo-20

cated with the photometers of the NASA AERONET. The Network for the Detection of
Atmospheric Composition Change (NDACC) is operated by NOAA. It includes a net-
work of about 30 lidars located world-wide. AD-Net gathers 13 research lidars that
cover East Asia and operate continuously. The National Institute for Environmental
Studies (NIES) operates a lidar network in Japan (http://www-lidar.nies.go.jp). Initiated25

in 2000, EARLINET now operates a set of 27 research lidar stations over Europe and
is part of the Europe-funded ACTRIS network (http://actris.nilu.no). Following the erup-
tion of the Eyjafjallajökull volcano in 2010 (Chazette et al., 2012), weather operational
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centers such as Meteo France and the UK MetOffice are planning to deploy automatic
operational lidar networks over France and the United Kingdom, with the objective to
deliver continuous measurements and to use them in aerosol forecasting systems.

In order to be assimilated into an aerosol model, the raw aerosol signal can either
be converted into aerosol concentrations using assumptions on their distribution (Raut5

et al., 2009a, b; Wang et al., 2013), or it can be assimilated directly into the model
solving the lidar equation within the observation operator (Wang et al., 2014). Note
that even in the latter case, the redistribution over the aerosol size bins is carried out
following the size distributions of the first guess used in the analysis. It is expected
that the benefit of assimilating lidar signals is to last longer (up to a few days) and10

should propagate farther than ground-based in situ measurements, owing to this
height-resolved information but also owing to the smaller representativeness error in
elevated layers. This has recently been demonstrated using lidar data from three days
of intensive observations over the western Mediterranean Basin in July 2012 (Wang et
al., 2014b).15

Aerosol optical properties

A world-wide routine monitoring of aerosol optical depth and other properties like the
Ångstrom component is provided by the photometers of the Aerosol Robotic Network20

(AERONET, http://aeronet.gsfc.nasa.gov) coordinated by NASA (e.g., Holben et al.,
1998).

The GAW aerosol network also provides measurements of aerosol properties over
the globe. The GAW in-situ aerosol network contains now more than 34 regional sta-
tions and 54 contributing stations, in addition to 21 global stations, reporting data –25

some of them in near-real-time – to the World Data Center for Aerosols (WDCA) hosted
by the Norwegian Center for Air Research (NILU) and available freely to all. The GAW-
PFR network for aerosol optical depth (AOD), coordinated by the World Optical Depth
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Research and Calibration Center (WORCC), includes 21 stations currently providing
daily data to WORCC (GAW, 2014).

SKYNET is a network of radiometers mainly based in Eastern Asia and the database
is hosted by Chiba University in Japan (http://atmos.cr.chiba-u.ac.jp).

5

Aircraft measurements

In Europe, routine monitoring of the atmosphere is provided by the IAGOS (In-
service Aircraft for a Global Observing System) program (http://www.iagos.org). An
increasing number of aircraft is equipped to measure O3, water vapor, and CO and10

instruments are developed to measure NOx, NOy and CO2. This initiative evolved
from the successful MOZAIC (Measurements of OZone, water vapor, CO, NOx by
in-service Airbus aircraft, http://www.iagos.fr/web/rubrique2.html) project with links to
the CARIBIC (http://www.caribic-atmospheric.com) project. In North America, NOAA-
ESRL has a Tropospheric Aircraft Ozone Measurement Program consisting of O3 mea-15

surements (http://www.esrl.noaa.gov/gmd/ozwv/) and a flask sampling program, mea-
suring greenhouse gases including CO (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/).

Despite the limited coverage, aircraft chemical observations have the potential to
provide important improvements to models when assimilated (Cathala et al., 2003).

20

Ozone sondes

Balloon-borne measurements of O3 are performed on a global scale and the data
are collected by the World Ozone and Ultraviolet Radiation Data Centre (WOUDC,
http://www.woudc.org/index_e.html). The sondes provide very detailed vertical profiles25

from the surface to about 30–35 km altitude, with an accuracy of 5–10 % (Smit et al.,
2007). Apart from monitoring the stratospheric O3 layer, the data are extensively used
to validate global tropospheric models as well as regional air quality models.
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Other sources of tropospheric composition information

Surface-based Multi-AXis Differential Optical Absorption Spectroscopy (MaxDOAS)
measurements are very interesting for atmospheric chemistry applications, because of
their ability to deliver approximately boundary-layer mean concentrations of O3, NO2,5

HCHO, glyoxal (CHOCHO), SO2, halogens and aerosols. Measurements are provided
at several sites, but a large-scale network is still missing.

Some regional networks of ceilometer observations exist (e.g., UK Met Office,
Deutscher Wetterdienst, Météo France). They provide mostly cloud base and cloud
layer data. They may in some cases (e.g., volcanic plumes) provide useful information10

on atmospheric aerosols.
The Network for the Detection of Atmospheric Composition Change (NDACC, http://

www.ndacc.org) provides measurements relevant to evaluate tropospheric composition
models, such as lidar data, O3 sondes and MaxDOAS.

Apart from ozone sondes, WMO Global Atmospheric Watch (GAW, http://www.wmo.15

int/pages/prog/arep/gaw/gaw_home_en.html) coordinates a variety of atmospheric ob-
servations and the data are provided through the World Data Centres. The Earth Sys-
tem Research Laboratory (ESRL) of NOAA provides access to a host of routine obser-
vations and links to field campaigns.

For greenhouse gases, the WMO-GAW World Data Centre for Greenhouse Gases20

(WDCGG, http://ds.data.jma.go.jp/gmd/wdcgg/) provides access to data with a global
coverage. The Global Greenhouse Gas Reference Network (http://www.esrl.noaa.gov/
gmd/ccgg/ggrn.php) of NOAA provides a backbone of world-wide observations. Data
from the Total Carbon Column Observing Network (TCCON, http://www.tccon.caltech.
edu) is used extensively to validate greenhouse gas assimilation and inversion systems25

as well as satellite data.
Dedicated measurement campaigns are essential additions to the more routine ca-

pabilities discussed above. Such campaigns provide dense observations of a larger
number of species and/or aerosol components with profiling capabilities and often in
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combination with surface in-situ and remote sensing. This provides excellent tests for
multiple aspects of the models. Examples are the TRACE-P (Talbot et al., 2003; Eisele
et al., 2003) and ICARTT (Fehsenfeld et al., 2006), the data of which have been used
in assimilation studies.

4.2 Satellite observations5

The primary agencies/organizations in North America and Europe that launch and op-
erate satellites used in the remote sensing of air quality include the National Aero-
nautics and Space Administration (NASA), the National Oceanic and Atmospheric Ad-
ministration (NOAA), the Canadian Space Agency (CSA), the European Space Agency
(ESA), the French Centre National d′Études Spatiales (CNES), and the Swedish Space10

Corporation (SSC). In Asia, the Japanese Aerospace Exploration Agency (JAXA) and
the Korean Aerospace Research Institute (KARI) contribute to the global observing sys-
tem, with recent contributions from the China National Space Administration (CNSA).

For atmospheric chemistry modeling and assimilation, the relevant species mea-
sured from space are NO2, CO, SO2, HCHO, CHOCHO, O3, and aerosol optical prop-15

erties (optical depth and other properties, aerosol backscatter profiles). The main tro-
pospheric satellite products are listed in Table 1 and the acronyms are expanded in
Table 2.

The satellite instruments listed in Table 1 are all on polar-orbiting satellites with
a fixed overpass time. The huge benefit of satellite instruments is the large volume20

of data. For instance, an instrument like OMI provides a full global coverage each day
with a mean resolution of about 20 km, see Fig. 2. The fact that area-averages are
observed, as opposed to the point measurements of the surface networks, has the
advantage that the retrieved quantities can be more easily compared to model grid
cell value, and the representation error is often smaller than for point observations.25

Another advantage of the satellite data is the sensitivity to concentrations in the free
troposphere, although retrieving the vertical distribution of the concentrations may in
some cases be challenging. Air quality models are typically evaluated against surface
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measurements and their performance inside and above the planetary boundary layer
is generally not well known.

On the other hand, satellite data have limitations. Currently, only one observation
per day or less is available, as compared to the hourly data from the routine surface
networks and there is only limited information on the diurnal cycle. Most instruments5

provide about one piece of vertical information in the troposphere and this information
is averaged over an extended vertical range: typically a total column or average free
tropospheric value is retrieved.

Furthermore, there are error correlations among nearby pixels, which typically re-
quires the application of thinning methods.10

The retrieval of trace gases in the troposphere is far from trivial, because of the
dependence on clouds, aerosols, surface albedo, thermal contrast, and other trace
gases. Errors in the characterization of these interfering aspects will result in some-
times substantial systematic or quasi random errors. Furthermore, the detection limit
of minor trace gases may exceed typical atmospheric concentrations (e.g., SO2 and15

HCHO over Europe). More work is needed to continuously improve existing retrieval
algorithms concerning the systematic errors and detection limits.

Many of the satellites listed in Table 1 are already passed their nominal lifetime. Fu-
ture follow-up missions are discussed and coordinated internationally (IGACO 2004;
CEOS-ACC, 2011; GEOSS, 2014; GCOS, 2010, 2011). In Europe, the EU Coperni-20

cus program will facilitate the launch of a series of satellite missions, the Sentinels.
Sentinels number 4 and 5 will provide observations of atmospheric composition. The
sentinel 5 precursor mission with the TROPOMI instrument (Veefkind et al., 2012),
a successor of OMI with 7 km resolution, will fill a possible gap between the present
generation of instruments (see Table 1) and the next generation of satellite instruments.25

An international geostationary constellation of satellites to observe air quality is in
preparation. This will consist of the ESA Sentinel 4 over Europe (Ingmann et al., 2012),
the KARI GEMS satellite over Asia (http://eng.kari.re.kr/sub01_01_02_09), and the
NASA TEMPO mission over America (Chance et al., 2013). These missions will provide
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unprecedented high-resolution measurement of air pollution with hourly observations
from space (e.g. Fishman, 2008).

Most retrieval products for the satellite sensors listed in Table 1 are based on the
general retrieval theory detailed by Rodgers (2000). Retrievals of atmospheric trace
gas profiles are fully specified by providing the retrieved profile, the averaging kernel,5

the covariance matrix and the a priori profile. The assimilation observation operator,
which relates the model profile xmodel to the retrieved profile, is then:

xr,model ≈ xa-priori +A(xmodel −xa-priori)

The retrieval covariance describes the observation errors. The kernel and covariance
together describe the altitude dependence of the sensitivity of the measurement to the10

concentrations, the degree of freedom of the signal and the intrinsic vertical resolution
of the observation. Kernels and covariances are not always provided by the retrieval
teams, which will result in a loss of information. Even the popular Differential Optical
Absorption Spectroscopy (DOAS) retrieval approach for total columns may be refor-
mulated in Rodgers terminology and averaging kernels can be defined (Eskes and15

Boersma, 2003).

4.3 Use of observations in chemical data assimilation

Combining satellite datasets through data assimilation is a powerful approach to put
multiple constraints on the chemistry/aerosol model. An example is MACC-II, where
most of the satellite datasets on O3, CO, NO2, AOD/backscatter, CO2 and CH4, as20

listed in Table 1, are used (e.g. Inness et al., 2013). Another example is a recent study
(Miyazaki et al., 2014), where satellite observations of NO2, O3, HNO3, and CO from
OMI, MLS, TES and MOPITT are combined to constrain the production of NOx by
lightning. The use of satellite retrievals in assimilation applications focused on top-
down emission estimates was recently reviewed (Streets et al., 2013).25
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For the use of satellite and surface/in-situ/remote sensing data in operational ap-
plications such as MACC-II, the availability of data in near-real time is an important
requirement.

For regional air quality, the major source of information is provided by the routine sur-
face observations, which have been put in place to monitor air quality regulations. In the5

USA, Europe and in parts of Asia (Japan), dense observations networks are in place.
For concentrations above the surface, the monitoring network is very sparse, with a lim-
ited amount of aircraft, sonde and surface remote sensing data points. Several groups
have started to incorporate satellite data to constrain tropospheric concentrations. One
major aspect here is the lack of diurnal sampling, which is addressed by future geosta-10

tionary missions, as discussed above. Furthermore, the number of species observed
routinely from space, or from the ground, is limited, and dedicated campaigns (e.g. with
aircraft) are crucial to test more model aspects. A more systematic approach to this
sparseness of above-surface information would be important to improve the regional
air quality models and to bridge the gap between global and regional scale modeling.15

Recommendations for global observing systems are discussed internationally. The
WMO-GAW IGACO report provides a useful overview of existing and planned satellite
missions and the complementary surface, balloon and aircraft observations (IGACO,
2004). GCOS discusses the observations needed to monitor the essential climate
variables (GCOS, 2010, 2011). The Group on Earth Observations (GEO) is coordi-20

nating efforts to build a Global Earth Observation System of Systems, or GEOSS
(http://www.earthobservations.org/geoss.shtml), on the basis of a 10 yr implementation
plan. The Committee on Earth Observation Satellites (CEOS) supports GEO and has
an acivity on Atmospheric Composition Constellation (ACC). The CEOS ACC White
Paper (CEOS-ACC, 2011) discusses the Geostationary Satellite Constellation for Ob-25

serving Global Air Quality. Gaps in observing atmospheric composition are discussed
in these international activities.

In many parts of the world, pollutant emissions are dominated by the smoke from
fires. The occurrence and strength of the fires is intrinsically unpredictable, which
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makes these a major source of errors in the models. Recently, satellite observations of
fire radiative power and burned area have been used to estimate emissions of aerosols,
organic and inorganic trace gases (Giglio et al., 2013). For instance, within the MACC-
II project a near-real time global fire product was developed with a resolution of 0.1◦,
which is used for reanalyses, nowcasting and even forecasting (Kaiser et al., 2012).5

Given the importance of fires, the use of such fire emission estimates based on obser-
vations is recommended.

Sand and dust storms may contribute significantly to PM (mostly PM10) ambient con-
centrations at long distances from their source region. Because the emission source
terms of sand and dust storm events are difficult to quantify, aerosol data assimila-10

tion is a promising area for sand and dust storm modeling and forecasting (SDS-WAS,
2014). The main efforts have focused on the assimilation of retrieval products (i.e. at-
mospheric parameters inferred from raw measurements), such as AOD retrieved from
satellite reflectance or from ground-based sun photometer measurements. However,
the difficulties associated with the operational use of lidar (and potentially ceilometer)15

observations as well as satellite aerosol vertical profiles, is the most limiting aspect
in data assimilation to improve sand/dust forecasts. Although there are some initial
promising non-operational experiments to assimilate aerosol vertical profiles (e.g., at
the Japan Meteorological Agency), more efforts are needed to better represent the
initial vertical dust structure in the models.20

In numerical weather prediction, a significant step in forecast skill was achieved when
the assimilation of retrieval products was replaced by the assimilation of satellite radi-
ances. In this way a loss of information or introduction of biases through the extra
retrieval process is avoided. It should be noted, however, that early retrievals often did
not follow the full retrieval theory (Rodgers, 2000) and it is important to use the ker-25

nels, covariances and a-priori profiles in the observation operator and error matrices.
Because of this success it has been debated whether to apply similar radiance as-
similation approaches to the atmospheric chemistry satellite observations. We do not
in general recommend such radiance assimilation approach for atmospheric compo-
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sition applications for the following reasons. First, a successful radiance assimilation
depends crucially on knowledge of the possible systematic biases of the instruments,
a clever choice of microwindows, and state-of-the-art radiative transfer modelling. Sec-
ondly, a careful implementation of Rodgers formalism preserves the information of the
satellite data, and there is a theoretical equivalence between the assimilation of re-5

trievals and the assimilation of radiances (Migliorini, 2012). Third, retrievals can be
stored in an efficient way, which avoids dealing with the large volumes of radiance data
provided by the satellite instruments (Migliorini, 2012).

5 Case studies

In this section, four case studies are presented. The first three pertain to the assimila-10

tion of chemical concentrations for forecasting or re-analysis. The fourth one highlights
inverse modeling to improve emission inventories; although it is performed with a CTM,
it is relevant to CCMM as well.

5.1 Case study from ECMWF: MACC re-analysis of atmospheric composition

An important application of data assimilation techniques is to produce consistent 3-D15

gridded data sets of the atmospheric state over long periods. These meteorological re-
analyses are widely used for climatological studies and more specifically to drive offline
CTM. Meteorological re-analyses have been produced by several centres such as the
National Centers for Environmental Prediction (NCEP; Kalnay et al., 1996), ECMWF
(Gibson et al., 1997; Uppala et al., 2005; Dee et al., 2011), the Japan Meteorological20

Agency (JMA; Onogi et al., 2007) and the Global Modeling and Assimilation Office
(Schubert et al., 1993).

Atmospheric composition, apart from water vapor, is typically not covered in these
re-analysis data sets. Only stratospheric O3 has been included in ECMWFs ERA-40
(Dethof and Hólm, 2004) and ERA-Interim (Dragani, 2011).25
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The availability of global satellite retrievals of reactive traces gases and aerosols
from satellites such as ENVISAT, Aura, MLS, Metop, Terra and Aqua over the last
two decades made it possible to produce a re-analysis data set with emphasis on at-
mospheric composition. Within the Monitoring Atmospheric Composition and Climate
(MACC) and the Global and regional Earth-system Monitoring using Satellite and in-5

situ data (GEMS) project (Hollingsworth et al., 2008), the Integrated Forecasting Sys-
tem (IFS) of ECWMF, which had been used to produce the ERA40 and ERA-Intrim
meteorological re-analysis, was extended to simulate chemically reactive gases (Flem-
ming et al., 2009), aerosols (Morcrette et al., 2009; Benedetti et al., 2008) and green-
house gases (Engelen et al., 2009), so that ECMWF’s 4-D-Var system (Courtier et al.,10

1994) could be used to assimilate satellite observations of atmospheric composition
together with meteorological observations at the global scale.

The description of the MACC model and data assimilation system and an evaluation
of the MACC re-analysis for reactive gases are given by Inness et al. (2013) in full detail.
The MACC system follows closely the configuration of the ERA-Interim re-analysis15

(Dee et al., 2011). Meteorological observations from the surface and sonde networks
as well as meteorological satellite observations were assimilated together with satellite
retrievals of total column and O3 profiles, CO total columns, AOD and tropospheric
columns of NO2. The MACC re-analysis has a horizontal resolution of about 80 km
(T255) for the troposphere and the stratosphere and covers the period 2003–2012.20

The MACC system assimilated more than one observation data set per species if
multiple data were available. For example, O3 profile retrievals from MLS were assim-
ilated together with O3 total column retrievals from OMI, SBUV-2 and SCIAMACHY to
exploit synergies of different instruments (Flemming et al., 2011). To reduce detrimen-
tal effects of inter-instrument biases, the variational bias correction scheme (Dee and25

Uppala, 2009) developed for the meteorological assimilation was adapted to correct
multiple atmospheric composition retrievals.

In the context of the 4-D-Var approach, it would have been possible to use the infor-
mation content of the atmospheric composition retrievals to correct the dynamic fields
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as demonstrated by Semane et al. (2009). However, earlier experiments (Morcrette,
2003) with IFS did not show a robust benefit for the quality of the meteorological fields.
Therefore, this feedback was disabled in the MACC re-analysis. A major issue in this
respect would be the correct specification of the complex error covariance between
meteorological fields and atmospheric composition. Also, no error correlation between5

different chemical species and between chemical and meteorological variables was
considered.

While the assimilation of radiance observations was the preferred choice for the
meteorological satellite observations, only retrievals of atmospheric composition total
columns or profile or AOD were assimilated. Ground-based and profile in-situ observa-10

tions of atmospheric composition were not assimilated but used to evaluate the MACC
re-analysis. The National Meteorological Center (NMC) method (Parrish and Derber,
1992) was used to estimate initial background error statistics for the atmospheric con-
stituents apart from O3 for which an ensemble method was applied (Fisher and Ander-
son, 2001).15

A key issue for chemical data assimilation with the MACC system is the limited ver-
tical signal of the retrievals from the troposphere, in particular from near the surface
where the highest concentrations of air pollutants occur. Further, the assimilation of
AOD does only constrain the optical properties of total aerosols but not of individual
aerosol components. It is therefore important that the assimilating model, i.e., IFS, can20

simulate the source and sink terms in realistic way. As shown by Huijnen et al. (2012),
the chemical data assimilation of total column CO and AOD greatly improved the re-
alism of the vertically integrated fields during a period of intensive biomass burning
in Western Russia in 2010. However, the biggest improvement with respect to surface
measurements was achieved by using a more realistic biomass burning emissions data25

set (GFAS, Kaiser et al., 2012).
The MACC re-analysis is a widely used data set which is freely available at http:

//www.copernicus-atmosphere.eu. It has been used to provide realistic boundary con-
ditions for regional air quality models (e.g. Schere et al., 2012; Zyryanov et al., 2012).
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To demonstrate the long-range transport, Fig. 3 shows a cross section of the zonal CO
flux at 180◦ E averaged over the 2003–2012 period in the top panel. The bottom panel
shows the time series of the monthly averaged meridonal CO transported over the
Northern Pacific (20◦–70◦N, 180◦ E, up to 300 hPa) for the whole period. The MACC
re-analysis was used to diagnose the anomalies of the inter-annual variability of global5

aerosols (e.g. Benedetti et al., 2013) and CO (Flemming and Inness, 2014). Finally, the
MACC AOD re-analysis was instrumental to estimate aerosol radiative forcing (Bellouin
et al., 2013) and was presented in the Fifth Assessment Report of the Intergovernmen-
tal Panel on Climate Change (IPCC, 2013). As pointed out by Inness et al. (2013), the
changes in the assimilated retrieval products from different instruments, namely CO10

and O3, during the 2003–2012 period as well as the rather short period of 10 years
requires caution if the MACC-re-analysis is used to estimate long-term trends.

5.2 Ground-level PM2.5 data assimilation into WRF-Chem

In the following, we demonstrate an application of EnKF (Whitaker and Hamill, 2002)
to assimilate surface fine particulate matter (PM2.5) observations with the WRF-Chem15

model (Grell et al., 2005) over the eastern part of North America. The modeling pe-
riod began on 23 June 2012, ended on 6 July 2012, and included a five-day spin-up
period. During this modeling period, weather over the area of interest was influenced
by a Bermuda high pressure system that contributed to the elevated concentrations
of PM2.5. For an illustration of such conditions, Fig. 4 shows 24 h average PM2.5 con-20

centrations at AIRNow sites for 29 June and 5 July obtained by hourly assimilation of
AIRNow observations.

PM2.5 observations used in the assimilation come from the U.S. EPA AIRNow data
exchange program (see Sect. 4). Standard meteorological upper air and surface ob-
servations were also assimilated.25

The grid resolution of the simulations is equal to 20 km. Initial and lateral bound-
ary conditions for meteorology were obtained from the global GFS ensemble that has
been operational at NCEP since May 2012. The length of ensemble forecasts lim-
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ited the extent of our forecasts to nine hours. Lateral boundary conditions for chemical
species were obtained from a global CTM (MOZART) simulation (Emmons et al., 2010).
Pollution by forest fires was derived from the Fire emission INventory from NCAR
(FINN, Wiedinmyer et al., 2011). Parameterization choices for physical and chemi-
cal processes and specification of anthropogenic emissions follow those described by5

Pagowski and Grell (2012) (except for emissions of SO2 for 2012 reduced by 40 %
as recommended by Fioletov et al., 2011). The reader is referred to previous work for
details given therein (Pagowski and Grell, 2012).

The six-hour assimilation cycle at 00z, 06z, 12z, and 18z used a one-hour assimila-
tion window for PM2.5 and a three-hour assimilation window for meteorological obser-10

vations.
Two numerical experiments were performed:

– NoDA – that included assimilation of meteorological observations only; and

– EnKF – that included assimilation of both AIRNow PM2.5 and meteorological ob-
servations. The increments to individual PM2.5 species were distributed according15

to their a priori contributions to the total PM2.5 mass. For the GOCART aerosol
module (Chin et al., 2000, 2002; Ginoux et al., 2001) employed in the simulations,
this approach yields better results compared to using individual aerosol species
as state variables in the EnKF procedure.

Verification statistics presented below were calculated over the period starting at 00Z20

28 June and ending at 00Z 7 July 2012.
In Fig. 5, bias and temporal correlation of forecasts interpolated to measurement

locations are shown for the two experiments. In calculating these verification statistics,
all available forecasts were matched with corresponding observations. We note that the
data assimilation significantly reduces negative model bias observed over most of the25

area of interest. A marked improvement in temporal correlation due to the assimilation,
in places negative for NoDA, is also apparent.
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In Fig. 6, time series of bias and spatial correlation of forecasts are shown. It is note-
worthy that the effect of meteorological observation assimilation on PM2.5 statistics is
rather minor. That is both a result of the scarcity of PBL profiles available for the as-
similation and difficulties in assimilating surface observations. A large positive impact
of PM2.5 data assimilation observed in Fig. 5 is further confirmed, but it is apparent that5

forecast quality deteriorates quickly. Causes for such deterioration include deficiencies
of the initial state resulting from the lack of observations of the individual PM2.5 species
and their vertical distribution, and errors due to inaccuracies in chemical and physical
parameterizations and inaccuracies of emission sources. The application of the GO-
CART aerosol parameterization was only dictated by computational requirements of10

ensemble simulations. Investigation on whether more sophisticated parameterizations
of aerosol chemistry maintain the quality of forecasts for a longer period is on-going.
Fast deterioration of forecasts suggests that, short of improving the model formulation
and/or the emissions inventory, parameterization of model errors within the ensemble
and post-processing of forecasts might provide an avenue for better PM2.5 prediction.15

5.3 Satellite data assimilation into WRF-Chem

The Gridpoint Statistical Interpolation (GSI) system (Kleist et al., 2009), which uses
a 3-D-Var approach, is applied here to perform data assimilation experiments using
satellite data to improve the initial aerosol state for the WRF-Chem (Grell et al., 2005)
model when utilizing the MOSAIC aerosol model (Zaveri et al., 2008). We present two20

case studies, which correspond to the use AOD (Saide et al., 2013) and cloud number
droplet satellite retrievals (Nd) (Saide et al., 2012a). The WRF-Chem configuration is
based on Saide et al. (2012b).

Assimilating AOD retrievals. In this case study, simulations were performed over Cal-25

ifornia, USA, and its surroundings assimilating AOD retrievals. Figure 7 shows results
when assimilating two 550 nm AOD retrievals, the MODIS dark target (Remer et al.,
2005), and the NASA neural network retrieval (http://gmao.gsfc.nasa.gov/forecasts/),
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which corrects biases with respect to AERONET (Holben et al., 2001) and filters odd
retrievals. The experiment shows that the AOD assimilation is able to correct the bi-
ases in the forward model providing a better agreement to AQS PM2.5 observations
and AERONET AOD measurements. PM2.5 concentrations show low bias one hour af-
ter assimilation and then the assimilation gradually returns towards concentrations and5

errors found when no assimilation is performed getting close to it after 48 h. Figure 7
also shows that the observationally constrained retrieval generally provides better re-
sults than the non-corrected AOD. An extreme case is where the dark target retrieval
has problems due to the bright surfaces (Fig. 7, bottom-right panel) deteriorating model
performance and the corrected retrieval is able to partially fix the problem.10

Figure 8 illustrates the effects of assimilating multiple-wavelength AOD retrievals
comparing its performance against just assimilating AOD at 550 nm, which is what
is commonly done. Error reductions with respect to non-assimilated AOD observations
are similar for both cases, but notable differences are found when comparing error re-
ductions for the Ångström exponent (AE), a proxy for the aerosol size distribution. The15

simulation assimilating only 550 nm AOD does not significantly change the AE, while
assimilating multiple-wavelength AOD improves performance of the AE.

These results demonstrate that satellite AOD assimilation can be used for improving
analysis and forecast, with additional improvements when using observationally
constrained retrievals and multiple wavelength data. Thus, future work needs to20

point towards incorporating additional retrievals, which need to be observationally
constrained to improve assimilation performance.

Assimilating cloud retrievals. Vast regions of the world are constantly covered by
clouds, which limit our ability to constrain aerosol model estimates with AOD retrievals.25

In order to overcome this limitation, a novel data assimilation approach was developed
to use cloud satellite retrievals to provide constraints on below-cloud aerosols (Saide
et al., 2012a). The method consists in using the online coupling and aerosol-cloud in-
teractions within WRF-Chem to provide cloud droplet number (Nd) estimates, which
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are compared to satellite retrievals through the data assimilation framework. Figure 9
presents results for the southeastern Pacific stratocumulus deck, where the MODIS
retrieval (Painemal and Zuidema, 2011) is assimilated and compared against indepen-
dent GOES retrievals (Painemal et al., 2012). The assimilation is able to correct the
low and high biases in Nd found in the guess with these corrections persisting even5

throughout the second day after assimilation. Furthermore, Saide et al. (2012a) show
that the corrections made to the below-cloud aerosols are in better agreement with in-
situ measurements of aerosol mass and number. Future steps should try to show the
value of this assimilation method on other regions and find potential synergies between
AOD and Nd assimilation in order to provide better aerosol forecasts and analyses.10

5.4 Satellite data assimilation for constraining anthropogenic emissions

The case studies performed with the SILAM dispersion model (http://silam.fmi.fi) have
demonstrated the possibility and efficiency of extension of the data assimilation to-
wards source apportionment. The goal of the numerical experiment was to improve the
emission estimates of PM2.5 via assimilating the MODIS-retrieved column-integrated15

AOD fields. The 4-D-Var assimilation method generally followed the approach of Vira
and Sofiev (2012) with several updates:

– three domains were considered: Europe, Southern Africa, and Southeast Asia

– the aerosol species included:

– primary OC, BC (MACCITY emission inventory, non-European domains) or20

primary PM2.5/PM10 (TNO-MACC emission, European domain)

– sulfate from SO2 oxidation

– nitrate from NOx oxidation (not adjusted during the assimilation)

– sea salt (embedded module in SILAM, adjusted by the assimilation)

– desert dust (embedded module in SILAM, adjusted by the assimilation)25
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– PM2.5 from wildfires (IS4FIRES emission inventory, adjusted by the assimila-
tion)

– the assimilation window was 1 month to reduce the noise and random fluctuations
of the emission corrections

– the boundary conditions were taken from a global SILAM simulation5

– a complete year, 2008, was analyzed with 0.5◦ spatial resolution and vertical cov-
erage up to the tropopause; the model was driven by ERA-Interim meteorological
information

An example of SILAM a-priori AOD pattern for Asia, fully collocated with MODIS ob-
servations (Fig. 10) shows the significant initial disagreement between the SILAM and10

MODIS AOD. In particular, the model shows almost no aerosol in northwestern India
and much too low values over eastern China. Assimilation improves the distribution and
reduces the negative bias (Fig. 10, bottom panel). Since the amount of dust emitted by
the experimental version of SILAM was quite low, the northern part of China and Mon-
golia are practically not corrected. But the Indian and Chinese industrial and agriculture15

regions were improved very efficiently. A comparison with independent data (AATSR
AOD retrievals) confirmed the trends: both substantial bias reduction and increase of
the correlation coefficient (Table 3).

The resulting emission estimates had substantial seasonal variation, different from
the a-priori estimates (Fig. 11). Apart from almost doubling the annual OC emissions20

(from 7.8 to 15 Mt of PM), the inversion also altered the seasonality, clearly suggesting
spring and autumn as the two periods with strong emission.

The efficiency of the emission inversion varied between the regions and strongly
depended on quality of the a-priori information. Thus, in Africa strong contribution from
wild land fires might have affected the final results for other PM species.25

The other potential issue in assimilation of total PM is the need to distribute the
information among individual components that are either emitted or created by chem-
ical transformations. In particular, there is a risk of artificial changes in SO2 sources
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because in many cases the total AOD is more sensitive to changing sulfate produc-
tion than to variations of the primary PM emission. A possible way out is to perform
simultaneous inversion for several species, e.g., for SO2 and PM emissions.

6 Potential difficulties for data assimilation in CCMM

Data assimilation in CCMM is recent and has typically been limited to chemical (in-5

cluding PM) data assimilation to improve chemical and, in a few cases, meteorological
predictions. The effect of assimilating jointly meteorological and chemical variables on
meteorological and chemical predictions has been limited to date and it is worthwhile
to discuss the potential difficulties that may be associated with such future applications,
particularly in the case of CCMM with feedbacks between chemistry and meteorology.10

The effect of chemical data assimilation on meteorological variables has been inves-
tigated in a few specific cases, for example the effect of stratospheric O3 assimilation
on winds (Semane et al., 2009) and that of AOD assimilation on the radiative budget
and winds (Jacobson and Kaufman, 2006). However, joint data assimilation of both
meteorological (e.g. winds or temperature) and chemical data has not been conducted15

to a large extent and it is not clear how much interactions could occur among meteoro-
logical and chemical state variables when assimilating both chemical and meteorolog-
ical data. In the worst case, some contradictory information due to measurement error
could be assimilated concerning some model variables. Most likely, one of the influen-
tial data sources may dominate as being less uncertain and/or more influential. Then,20

either an offline sensitivity analysis could be used to diagnose which input variable to
retain for data assimilation or the data assimilation process would automatically give
more weight to the less uncertain/more influential variable.

Another potential difficulty concerns the assimilation of aggregated variables such
as PM mass concentration or AOD. The effect on the model individual variables (i.e.,25

PM individual components) is currently typically performed by modifying all PM com-
ponents proportionally to the model component fractions. This approach may lead to
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erroneous results if the prior chemical composition differs significantly from the one in
the model, for example, if one component of the aggregated variable (total PM mass) is
dominating in the model, but is not the one that needs to be corrected. One example is
the assimilation of AOD in the presence of a volcanic ash plume over the ocean, which
may lead to a corrective increase in sea salt instead of the addition of volcanic ash in5

the model.
An approach to circumvent that problem is to assimilate individual PM component

mass concentrations. However, the lack of routinely available continuous measure-
ments of PM component concentrations has so far prevented the operational use of
such information. Furthermore, this process could potentially lead to difficulties, when10

both total mass concentration and the mass concentrations of individual PM compo-
nents are assimilated. The sum of individual PM component mass concentrations may
not necessarily be consistent with the total PM mass concentration because of mea-
surement artifacts (which may affect both the individual component mass measure-
ments and the total PM mass measurement). If so, the data source with the least15

observation error should dominate or the forecast may remain little affected by the
assimilation. This implies that the observation errors need to be correctly character-
ized. In that regard, assimilation of multi-wavelength AOD, single-scattering albedo,
Ångstrom exponent, and/or absorption optical depth can place additional constraints
on the aerosol composition by providing information on particle size and absorption.20

Similar difficulties could arise when assimilating multiple gaseous species with chem-
ical interactions (e.g., O3, NO2, HCHO). However, such multi-species data assimilation
applications have been conducted successfully so far, which suggests that this process
is not a major source of difficulties. Typically, the assimilation of additional chemical
species (e.g., NO2 in addition to O3) shows little improvement over the assimilation of25

the first species.
The assimilation of both satellite and surface data for chemical species has been

conducted and previous applications have shown that it works well. It is likely that
the satellite data correct concentrations in the free troposphere whereas surface data
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correct concentrations in the planetary boundary layer and that the two regions are not
strongly coupled. Cases with conditions of deep convection when the coupling between
those atmospheric regions becomes important should be investigated to stress the
data assimilation process of distinct sources of data having greater interactions on the
model variables.5

Concerning data assimilation methods, the error cross-correlations, such as wind-
chemical species or species-species, would be dynamically estimated with EnKF; how-
ever, their specification would be complex if not problematic in an optimal interpolation,
3-D-Var or 4-D-Var data assimilation.

Finally, a major difficulty for data assimilation in CCMM is likely to be the paucity of10

data for chemical (including PM) data assimilation. For example, in the case of satellite
data, insufficient vertical resolution and temporal resolution are a potential difficulty for
chemical data assimilation.

7 Conclusion and recommendations

Data assimilation has been performed so far mostly as assimilation of meteorologi-15

cal observations in numerical weather prediction (NWP) models or as assimilation of
chemical concentrations in CTM and, to a lesser extent, in CCMM. Improvements in
meteorological fields typically benefits CTM and CCMM performance and there are
some examples of the effect of chemical data assimilation on meteorological results;
however, little work has been conducted so far to assimilate both meteorological and20

chemical data jointly into CCMM. As a result, the potential feedbacks of chemical data
assimilation on meteorological forecasts have not been fully investigated yet.

Although most applications of chemical data assimilation have addressed the im-
provement of chemical concentration fields, the correction of emission biases may
also be an important area of development and applications, in particular for emission25

terms that carry large uncertainties, such as sand/dust storms, biomass fires, allergenic
pollen episodes and accidental releases.
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A major limitation of data assimilation in CCMM is likely to be the limited availabil-
ity of data, particularly in near-real-time. For example, there has been no assimilation
of PM component concentration data conducted so far and the assimilation of total
PM concentrations necessarily involves assumptions that may not reflect reality and,
therefore, significantly limit the benefits of assimilating those data. Joint assimilation5

of surface and satellite data has proven useful, but rather disconnected, the former
affecting mostly the boundary layer concentrations while the latter affects the free tro-
posphere concentrations. A more thorough investigation of the potential couplings be-
tween those tropospheric compartments appears warranted. Satellite data are very
valuable because of the coverage that they can provide; the combination of using data10

from polar orbiting satellites that provide good spatial coverage but with limited tem-
poral resolution and geostationary satellites that provide limited spatial coverage and
resolution but continuous temporal coverage should be investigated (e.g., the future
ESA sentinel-4 and sentinel-5 missions would provide such complementary informa-
tion for atmospheric chemical species such as O3, NO2, SO2, HCHO, and AOD).15

As more chemical data become available in near-real-time, the assimilation of large
data sets from widely different sources (e.g., surface, ground-based remote and satel-
lite data) into CCMM may lead to new challenges to develop optimal and efficient data
assimilation procedures.

Although data assimilation for CCMM is still in its infancy, results obtained so far20

suggest that it is likely that more work in this area will lead to improvements not only
for atmospheric chemistry forecasts, but also for numerical weather forecasts. If such
results are indeed confirmed in future applications, one could hope then that chemical
data assimilation will become more valuable in terms of operational applications and
that more resources, particularly in terms of data bases, will be allocated to it. Further-25

more, as computer resources become increasingly more powerful, global CCMM are
likely to become also more common and data assimilation in global CCMM could grow
accordingly.

32287

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/32233/2014/acpd-14-32233-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 32233–32323, 2014

Data assimilation in
atmospheric

chemistry models

M. Bocquet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In terms of data assimilation methods, two major competing branches for data as-
similation are likely to emerge for future operational applications: weak constraint 4-D-
Var with longer assimilation windows and ensemble 4-D-Var in which covariances are
evolved using ensembles but minimization of the cost function is obtained with a varia-
tional approach.5

Finally, this review has focused on data assimilation. Image assimilation is also an
important field in the geosciences. The assimilation of images such as clouds and large
plumes (due to volcanic eruptions or large biomass fires) can also provide notable
improvements for short-term forecasting (nowcasting). Furthermore, the source terms
of volcanic eruptions, biomass fires, and sand/dust storms could be better determined10

via image assimilation. This area of research would complement nicely current ongoing
work on data assimilation and lead to better capabilities for CCMM.
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Table 1. Summary of major satellite instruments for the period 2003 to the near future, and the
atmospheric composition species detected by these instruments. The focus is on tropospheric
composition.

Sensor (Satellite) Measurement
Period

Species Reference

SCIAMACHY
(ENVISAT)

2002–2012 NO2, SO2, HCHO, CO,
CH4, CO2, AOD, O3,
CHOCHO

Bovensmann et al.
(1999)

OMI (EOS-Aura) 2004– NO2, SO2, HCHO,
AOD, O3, CHOCHO

Levelt et al. (2006)

GOME-2 (METOP-A)
GOME-2 (METOP-B)

2006–
2012–

NO2, SO2, HCHO,
AOD, O3, CHOCHO

Callies et al. (2000)

AIRS (EOS-Aqua) 2002– O3, SO2, CO, CH4,
CO2

Aumann et al.
(2003)

MOPITT (EOS-Terra) 2000– CO, CH4 Drummond and
Mand (1996)

TES (EOS-Aura) 2004– O3, CO, CH4, NH3,
CO2

Beer et al. (2001)

IASI (METOP-A)
IASI (METOP-B)

2006–
2012–

O3, SO2, CO, CH4,
NH3, NMVOC, NH3,
CO2

Clerbaux et al.
(2009)

MISR (EOS-Terra) 2000– AOD Diner et al. (2001)
MODIS (EOS-Terra)
MODIS (EOS-Aqua)

2000–
2002–

AOD, fires Barnes et al. (1998)

VIIRS (Suomi-NPP) 2011– AOD, fires GSFC (2011)
POLDER (PARASOL) 2004–2013 AOD, aerosol proper-

ties
Lier and Bach
(2008)

CALIOP (CALIPSO) 2006– Aerosol backscatter
profiles

Winkler et al. (2003)

TANSO-FTS (GOSAT) 2009– CH4, CO2 Kuze et al. (2009)
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Table 2. Selected list of acronyms.

AIRS Atmospheric Infrared Sounder
AVHRR Advanced Very High-Resolution Radiometer
CALIOP Cloud-Aerosol LIdar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
IASI Infrared Atmospheric Sounding Interferometer
MISR Multiangle Imaging SpectroRadiometer
MODIS Moderate Resolution Imaging Spectroradiometer
MOPITT Measurements Of Pollution In The Troposphere
NPP National Polar-orbiting Partnership
OMI Ozone Monitoring Instrument
PARASOL Polarization and Anisotropy of Reflectances for Atmospheric Sciences

coupled with Observations from a Lidar
SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
TES Tropospheric Emission Spectrometer
VIIRS Visible Infrared Imaging Radiometer Suite
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Table 3. Bias and correlation coefficient for comparison with independent satellite observations
of AATSR for the considered regions.

Correlation, a priori Correlation, a posteriori Bias, a priori Bias, a posteriori

Africa 0.44 0.47 −0.02 −0.01
Asia 0.41 0.50 −0.07 −0.04
Europe 0.23 0.30 −0.01 −0.005
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Figure 1. Assimilation of SCIAMACHY data in the CMAQ CTM for a simulation of O3 2416 

concentrations over the Madrid Region, Spain. Top (a): O3 data from SCIAMANCHY on 2417 

01/08/2007. Middle (b): Monthly-average O3 concentrations simulated with MM5-CMAQ 2418 

prior to data assimilation, August 2007. Bottom (c): Linear regression between simulated and 2419 

measured O3 concentrations averaged over all Madrid monitoring stations for the week of 1 2420 

to 8 August 2007. Model simulation results were obtained with assimilation of 2421 

SCIAMACHY data. The correlation coefficient is 0.754. 2422 

Figure 1. Assimilation of SCIAMACHY data in the CMAQ CTM for a simulation of O3 con-
centrations over the Madrid Region, Spain. Top (a): O3 data from SCIAMANCHY on 1 August
2007. Middle (b): monthly-average O3 concentrations simulated with MM5-CMAQ prior to data
assimilation, August 2007. Bottom (c): linear regression between simulated and measured O3
concentrations averaged over all Madrid monitoring stations for the week of 1 to 8 August 2007.
Model simulation results were obtained with assimilation of SCIAMACHY data. The correlation
coefficient is 0.754.
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Figure 2. Measurements of the tropospheric NO2 column over Europe from the Ozone Monitor-
ing Instrument (OMI) on EOS-Aura (Boersma et al., 2011). Top panel: yearly-mean observation
for 2005. Bottom panel: a sum of all observations available for assimilation on one day with little
cloud cover (30 August 2005), showing the pixel size (13km×24km at nadir) and the overlap
between orbits at high latitude. The retrieved cloud fraction is used to fade out the measure-
ments (white indicates 100 % cloud cover).
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 2434 

 2435 

Figure 3: Cross section at 180 E of the average zonal CO flux (kg/(m2s)) in the 2003-2012 2436 

period calculated from the CO, U and density fields of the MACC re-analysis (top). Time 2437 

series of monthly mean CO (kg/s) transported over the Northern Pacific through a pane at 2438 

180 E (30N-70N, up 300 hPa) (bottom). 2439 

Figure 3. Cross section at 180◦ E of the average zonal CO flux (kgm−2 s−1) in the 2003–2012
period calculated from the CO, U and density fields of the MACC re-analysis (top). Time series
of monthly mean CO (kgs−1) transported over the Northern Pacific through a pane at 180◦ E
(30–70◦ N, up 300 hPa) (bottom).
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Figure 4. 24 h average PM2.5 concentrations (µgm−3) for 29 June (left) and 5 July 2012 (right).
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Figure 5. Bias (µgm−3) (top) and temporal correlation (bottom) of forecasts for NoDA (left)
and EnKF (right) simulations against AIRnow observations for the period 28 June–6 July 2012.
Black dots denote negative correlations.
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Figure 6. Diurnal cycle of bias (µgm−3) (left) and spatial correlation (right) of PM2.5 forecasts
for the NoDA (blue) and EnKF (red) simulations against AIRnow observations for the period
28 June–6 July 2012. Black vertical lines are plotted at assimilation times.
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Figure 7. Results when assimilating satellite retrieved AOD over the SW US for the first 10 days
of May 2010. Top-left panel shows time series of model and observed mean PM2.5 over AQS
sites in California and Nevada. Top-right panel shows mean PM2.5 as a function of forecast
hour for the same sites. Bottom panels shows AOD time series at two sites for AERONET data
(500 nm), operational MODIS (550 nm), NASA NNR (550 nm), the non-assimilated forecast and
the two assimilation forecasts (500 nm). Modified from Saide et al. (2013).
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Figure 8. Fractional error reductions for 550 nm AOD and 550–870 nm Ångström exponent
(rows) from non-assimilated to assimilation of Terra retrievals computed using Aqua retrievals
(e.g., errors for a ∼ 3 h forecast). Figures in the left column assimilate only MODIS 550 nm AOD
while the ones in the right column assimilate MODIS 550, 660, 870, and 1240 nm over ocean
and only 550 nm over land. Modified from Saide et al. (2013).
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Figure 9. Results when assimilating cloud retrievals to improve below-cloud aerosol state. 2608 

Top panels show observed and model maps of cloud droplet number [Nd, #/cm3] for the 2609 

southeastern Pacific. The bottom panel shows time series of GOES and Nd forecasts after 2610 

assimilation of the MODIS retrieval on the top panels. The time series are presented as box 2611 

and whisker plots computed over the rectangle on the top-left panel; center solid lines 2612 

indicate the median, circles represent the mean, boxes indicate upper and lower quartiles, and 2613 

whiskers show the upper and lower deciles. Time series are shown during day time for 2 days 2614 

after assimilation. 2615 
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Figure 9. Results when assimilating cloud retrievals to improve below-cloud aerosol state. Top
panels show observed and model maps of cloud droplet number [Nd, #cm−3] for the southeast-
ern Pacific. The bottom panel shows time series of GOES and Nd forecasts after assimilation
of the MODIS retrieval on the top panels. The time series are presented as box and whisker
plots computed over the rectangle on the top-left panel; center solid lines indicate the median,
circles represent the mean, boxes indicate upper and lower quartiles, and whiskers show the
upper and lower deciles. Time series are shown during day time for 2 days after assimilation.
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Figure 10. SILAM a priori (top), MODIS observations (middle) and SILAM a posteriori (bottom)
AOD, mean over 2008, model output fully collocated with MODIS.
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Figure 11. Monthly emissions of OC in Asia, total 2008, unit = Mt PM month-1. 2666 
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Figure 11. Monthly emissions of OC in Asia, total 2008, unit = MtPMmonth−1.
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