000276360 001__ 276360
000276360 005__ 20240712101015.0
000276360 0247_ $$2doi$$a10.5194/gmd-8-2777-2015
000276360 0247_ $$2ISSN$$a1991-959X
000276360 0247_ $$2ISSN$$a1991-9603
000276360 0247_ $$2Handle$$a2128/9463
000276360 0247_ $$2WOS$$aWOS:000364325700005
000276360 0247_ $$2altmetric$$aaltmetric:21827713
000276360 037__ $$aFZJ-2015-06818
000276360 041__ $$aEnglish
000276360 082__ $$a910
000276360 1001_ $$0P:(DE-HGF)0$$aMarécal, V.$$b0$$eCorresponding author
000276360 245__ $$aA regional air quality forecasting system over Europe: the MACC-II daily ensemble production
000276360 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2015
000276360 3367_ $$2DRIVER$$aarticle
000276360 3367_ $$2DataCite$$aOutput Types/Journal article
000276360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568970029_27158
000276360 3367_ $$2BibTeX$$aARTICLE
000276360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276360 3367_ $$00$$2EndNote$$aJournal Article
000276360 520__ $$aThis paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in the MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The paper gives an overall picture of its status at the end of MACC-II (summer 2014) and analyses the performance of the multi-model ensemble. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs (non-methane volatile organic compounds) and PAN+PAN precursors) over eight vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations.The performance of the system is assessed daily, weekly and every 3 months (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the ensemble median to forecast regional ozone pollution events. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10. The statistical indicators for ozone in summer 2014 show that the ensemble median gives on average the best performances compared to the seven models. There is very little degradation of the scores with the forecast day but there is a marked diurnal cycle, similarly to the individual models, that can be related partly to the prescribed diurnal variations of anthropogenic emissions in the models. During summer 2014, the diurnal ozone maximum is underestimated by the ensemble median by about 4 μg m−3 on average. Locally, during the studied ozone episodes, the maxima from the ensemble median are often lower than observations by 30–50 μg m−3. Overall, ozone scores are generally good with average values for the normalised indicators of 0.14 for the modified normalised mean bias and of 0.30 for the fractional gross error. Tests have also shown that the ensemble median is robust to reduction of ensemble size by one, that is, if predictions are unavailable from one model. Scores are also discussed for PM10 for winter 2013–1014. There is an underestimation of most models leading the ensemble median to a mean bias of −4.5 μg m−3. The ensemble median fractional gross error is larger for PM10 (~ 0.52) than for ozone and the correlation is lower (~ 0.35 for PM10 and ~ 0.54 for ozone). This is related to a larger spread of the seven model scores for PM10 than for ozone linked to different levels of complexity of aerosol representation in the individual models. In parallel, a scientific analysis of the results of the seven models and of the ensemble is also done over the Mediterranean area because of the specificity of its meteorology and emissions.
000276360 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000276360 588__ $$aDataset connected to CrossRef
000276360 7001_ $$0P:(DE-HGF)0$$aPeuch, V.-H.$$b1
000276360 7001_ $$0P:(DE-HGF)0$$aAndersson, C.$$b2
000276360 7001_ $$0P:(DE-HGF)0$$aAndersson, S.$$b3
000276360 7001_ $$0P:(DE-HGF)0$$aArteta, J.$$b4
000276360 7001_ $$0P:(DE-HGF)0$$aBeekmann, M.$$b5
000276360 7001_ $$0P:(DE-HGF)0$$aBenedictow, A.$$b6
000276360 7001_ $$0P:(DE-HGF)0$$aBergström, R.$$b7
000276360 7001_ $$0P:(DE-HGF)0$$aBessagnet, B.$$b8
000276360 7001_ $$0P:(DE-HGF)0$$aCansado, A.$$b9
000276360 7001_ $$0P:(DE-HGF)0$$aChéroux, F.$$b10
000276360 7001_ $$0P:(DE-HGF)0$$aColette, A.$$b11
000276360 7001_ $$0P:(DE-HGF)0$$aComan, A.$$b12
000276360 7001_ $$0P:(DE-HGF)0$$aCurier, R. L.$$b13
000276360 7001_ $$0P:(DE-HGF)0$$aDenier van der Gon, H. A. C.$$b14
000276360 7001_ $$0P:(DE-HGF)0$$aDrouin, A.$$b15
000276360 7001_ $$0P:(DE-Juel1)129194$$aElbern, H.$$b16$$ufzj
000276360 7001_ $$0P:(DE-HGF)0$$aEmili, E.$$b17
000276360 7001_ $$0P:(DE-HGF)0$$aEngelen, R. J.$$b18
000276360 7001_ $$0P:(DE-HGF)0$$aEskes, H. J.$$b19
000276360 7001_ $$0P:(DE-HGF)0$$aForet, G.$$b20
000276360 7001_ $$0P:(DE-HGF)0$$aFriese, E.$$b21
000276360 7001_ $$0P:(DE-HGF)0$$aGauss, M.$$b22
000276360 7001_ $$0P:(DE-HGF)0$$aGiannaros, C.$$b23
000276360 7001_ $$0P:(DE-HGF)0$$aGuth, J.$$b24
000276360 7001_ $$0P:(DE-HGF)0$$aJoly, M.$$b25
000276360 7001_ $$0P:(DE-HGF)0$$aJaumouillé, E.$$b26
000276360 7001_ $$0P:(DE-HGF)0$$aJosse, B.$$b27
000276360 7001_ $$0P:(DE-HGF)0$$aKadygrov, N.$$b28
000276360 7001_ $$0P:(DE-HGF)0$$aKaiser, J. W.$$b29
000276360 7001_ $$0P:(DE-Juel1)129347$$aKrajsek, K.$$b30$$ufzj
000276360 7001_ $$0P:(DE-HGF)0$$aKuenen, J.$$b31
000276360 7001_ $$0P:(DE-HGF)0$$aKumar, U.$$b32
000276360 7001_ $$0P:(DE-HGF)0$$aLiora, N.$$b33
000276360 7001_ $$0P:(DE-HGF)0$$aLopez, E.$$b34
000276360 7001_ $$0P:(DE-HGF)0$$aMalherbe, L.$$b35
000276360 7001_ $$0P:(DE-HGF)0$$aMartinez, I.$$b36
000276360 7001_ $$0P:(DE-HGF)0$$aMelas, D.$$b37
000276360 7001_ $$0P:(DE-HGF)0$$aMeleux, F.$$b38
000276360 7001_ $$0P:(DE-HGF)0$$aMenut, L.$$b39
000276360 7001_ $$0P:(DE-HGF)0$$aMoinat, P.$$b40
000276360 7001_ $$0P:(DE-HGF)0$$aMorales, T.$$b41
000276360 7001_ $$0P:(DE-HGF)0$$aParmentier, J.$$b42
000276360 7001_ $$0P:(DE-HGF)0$$aPiacentini, A.$$b43
000276360 7001_ $$0P:(DE-HGF)0$$aPlu, M.$$b44
000276360 7001_ $$0P:(DE-HGF)0$$aPoupkou, A.$$b45
000276360 7001_ $$0P:(DE-HGF)0$$aQueguiner, S.$$b46
000276360 7001_ $$0P:(DE-HGF)0$$aRobertson, L.$$b47
000276360 7001_ $$0P:(DE-HGF)0$$aRouïl, L.$$b48
000276360 7001_ $$0P:(DE-HGF)0$$aSchaap, M.$$b49
000276360 7001_ $$0P:(DE-HGF)0$$aSegers, A.$$b50
000276360 7001_ $$0P:(DE-HGF)0$$aSofiev, M.$$b51
000276360 7001_ $$0P:(DE-HGF)0$$aTarasson, L.$$b52
000276360 7001_ $$0P:(DE-HGF)0$$aThomas, M.$$b53
000276360 7001_ $$0P:(DE-HGF)0$$aTimmermans, R.$$b54
000276360 7001_ $$0P:(DE-HGF)0$$aValdebenito, Á.$$b55
000276360 7001_ $$0P:(DE-HGF)0$$avan Velthoven, P.$$b56
000276360 7001_ $$0P:(DE-HGF)0$$avan Versendaal, R.$$b57
000276360 7001_ $$0P:(DE-HGF)0$$aVira, J.$$b58
000276360 7001_ $$0P:(DE-HGF)0$$aUng, A.$$b59
000276360 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-8-2777-2015$$gVol. 8, no. 9, p. 2777 - 2813$$n9$$p2777 - 2813$$tGeoscientific model development$$v8$$x1991-9603$$y2015
000276360 8564_ $$uhttp://www.geosci-model-dev.net/8/2777/2015/gmd-8-2777-2015.pdf
000276360 8564_ $$uhttps://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.pdf$$yOpenAccess
000276360 8564_ $$uhttps://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.gif?subformat=icon$$xicon$$yOpenAccess
000276360 8564_ $$uhttps://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000276360 8564_ $$uhttps://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000276360 8564_ $$uhttps://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000276360 8564_ $$uhttps://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276360 909CO $$ooai:juser.fz-juelich.de:276360$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000276360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129194$$aForschungszentrum Jülich GmbH$$b16$$kFZJ
000276360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129347$$aForschungszentrum Jülich GmbH$$b30$$kFZJ
000276360 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000276360 9141_ $$y2015
000276360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000276360 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000276360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2014
000276360 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000276360 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000276360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000276360 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000276360 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000276360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000276360 920__ $$lyes
000276360 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000276360 9801_ $$aUNRESTRICTED
000276360 9801_ $$aFullTexts
000276360 980__ $$ajournal
000276360 980__ $$aVDB
000276360 980__ $$aI:(DE-Juel1)IEK-8-20101013
000276360 980__ $$aUNRESTRICTED
000276360 981__ $$aI:(DE-Juel1)ICE-3-20101013