001     276360
005     20240712101015.0
024 7 _ |a 10.5194/gmd-8-2777-2015
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/9463
|2 Handle
024 7 _ |a WOS:000364325700005
|2 WOS
024 7 _ |a altmetric:21827713
|2 altmetric
037 _ _ |a FZJ-2015-06818
041 _ _ |a English
082 _ _ |a 910
100 1 _ |a Marécal, V.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A regional air quality forecasting system over Europe: the MACC-II daily ensemble production
260 _ _ |a Katlenburg-Lindau
|c 2015
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568970029_27158
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in the MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The paper gives an overall picture of its status at the end of MACC-II (summer 2014) and analyses the performance of the multi-model ensemble. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs (non-methane volatile organic compounds) and PAN+PAN precursors) over eight vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations.The performance of the system is assessed daily, weekly and every 3 months (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the ensemble median to forecast regional ozone pollution events. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10. The statistical indicators for ozone in summer 2014 show that the ensemble median gives on average the best performances compared to the seven models. There is very little degradation of the scores with the forecast day but there is a marked diurnal cycle, similarly to the individual models, that can be related partly to the prescribed diurnal variations of anthropogenic emissions in the models. During summer 2014, the diurnal ozone maximum is underestimated by the ensemble median by about 4 μg m−3 on average. Locally, during the studied ozone episodes, the maxima from the ensemble median are often lower than observations by 30–50 μg m−3. Overall, ozone scores are generally good with average values for the normalised indicators of 0.14 for the modified normalised mean bias and of 0.30 for the fractional gross error. Tests have also shown that the ensemble median is robust to reduction of ensemble size by one, that is, if predictions are unavailable from one model. Scores are also discussed for PM10 for winter 2013–1014. There is an underestimation of most models leading the ensemble median to a mean bias of −4.5 μg m−3. The ensemble median fractional gross error is larger for PM10 (~ 0.52) than for ozone and the correlation is lower (~ 0.35 for PM10 and ~ 0.54 for ozone). This is related to a larger spread of the seven model scores for PM10 than for ozone linked to different levels of complexity of aerosol representation in the individual models. In parallel, a scientific analysis of the results of the seven models and of the ensemble is also done over the Mediterranean area because of the specificity of its meteorology and emissions.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Peuch, V.-H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Andersson, C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Andersson, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Arteta, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Beekmann, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Benedictow, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bergström, R.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bessagnet, B.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Cansado, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Chéroux, F.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Colette, A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Coman, A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Curier, R. L.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Denier van der Gon, H. A. C.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Drouin, A.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Elbern, H.
|0 P:(DE-Juel1)129194
|b 16
|u fzj
700 1 _ |a Emili, E.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Engelen, R. J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Eskes, H. J.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Foret, G.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Friese, E.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Gauss, M.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Giannaros, C.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Guth, J.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Joly, M.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Jaumouillé, E.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Josse, B.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Kadygrov, N.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Kaiser, J. W.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Krajsek, K.
|0 P:(DE-Juel1)129347
|b 30
|u fzj
700 1 _ |a Kuenen, J.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Kumar, U.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Liora, N.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Lopez, E.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Malherbe, L.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Martinez, I.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Melas, D.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Meleux, F.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Menut, L.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Moinat, P.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Morales, T.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Parmentier, J.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Piacentini, A.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Plu, M.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Poupkou, A.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Queguiner, S.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Robertson, L.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Rouïl, L.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Schaap, M.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Segers, A.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Sofiev, M.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Tarasson, L.
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Thomas, M.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Timmermans, R.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Valdebenito, Á.
|0 P:(DE-HGF)0
|b 55
700 1 _ |a van Velthoven, P.
|0 P:(DE-HGF)0
|b 56
700 1 _ |a van Versendaal, R.
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Vira, J.
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Ung, A.
|0 P:(DE-HGF)0
|b 59
773 _ _ |a 10.5194/gmd-8-2777-2015
|g Vol. 8, no. 9, p. 2777 - 2813
|0 PERI:(DE-600)2456725-5
|n 9
|p 2777 - 2813
|t Geoscientific model development
|v 8
|y 2015
|x 1991-9603
856 4 _ |u http://www.geosci-model-dev.net/8/2777/2015/gmd-8-2777-2015.pdf
856 4 _ |u https://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/276360/files/gmd-8-2777-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:276360
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)129194
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 30
|6 P:(DE-Juel1)129347
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21