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Elasticity of polymeric 

nanocolloidal particles
Jonas Riest , , Labrini Athanasopoulou , Sergei A. Egorov , Christos N. Likos  & 

, ,

Softness is an essential mechanical feature of macromolecular particles such as polymer-grafted 

nanocolloids, polyelectrolyte networks, cross-linked microgels as well as block copolymer and 

dendrimer micelles. Elasticity of individual particles directly controls their swelling, wetting, and 

adsorption behaviour, their aggregation and self-assembly as well as structural and rheological 

study the deformation behaviour of a single spherical polymer brush upon diametral compression. 

We observe a universal response, which is rationalised using scaling arguments and interpreted in 

terms of two coarse-grained models. At small and intermediate compressions the deformation can 

be accurately reproduced by modelling the brush as a liquid drop, whereas at large compressions 

the brush behaves as a soft ball. Applicable far beyond the pairwise-additive small-strain regime, 

dense disordered and crystalline phases.

Mechanical properties are o�en among the most attractive aspects of both synthetic and natural nano-
particles. In some cases, the nanoparticles stand out because of extraordinary sti�ness and strength, and 
in others elasticity controls their shape, interactions, or self-assembly. Much of the observed behaviour is 
consistent with macroscopic continuum elasticity despite the small particle size. For example, the rippled 
shape of bent carbon nanotubes1 as well as the deformation of microtubules2 and protein nanotubes3 
indented by a sharp tip can be explained in terms of thin shell theory and so can be the faceted icosa-
hedral form of large spherical viral capsids4. Also within the domain of classical elasticity are the Hertz 
theory used to interpret the correlations in solutions of microgels5 and the indentation of polymer micro-
spheres with nanosize tips6 as well as models of adhesion and wetting of hard7,8 and so� nanoparticles9–11.

�e applicability of continuum elasticity at such small scales is far from obvious and must be validated 
by simulations12–14 which, among other things, point to the importance of surface elastic terms needed 
to account for the size dependence of the moduli12. �e agreement found is generally rather good, 
encouraging further use of the continuum description. A particularly interesting area is the mechanics 
of nanocolloids such as polymer-gra�ed nanoparticles and dendrimer micelles, where elastic theory can 
be employed to construct coarse-grained models15 capable of capturing the many-body e�ects16.

We explore this idea by probing the elasticity of spherical polymer brushes (SPBs; Fig. 1a) which inter-
polate between star polymers17 and polymer-stabilised colloids. Using simulations and self-consistent 
�eld theory, we study static deformations of a single SPB in good solvent conditions con�ned to a slit 
and perform diametral compression as a standard mechanical test18. �e results are explained in terms 
of two complementary models, suggesting that the SPB behaves as a liquid drop at small compressions 
and solidi�es at large compressions. Furthermore, we use scaling arguments to explain the universal 
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deformation response virtually independent on the number and length of chains in the SPB. Our pre-
dictions can be explored experimentally either directly in force-deformation measurements of SPBs19 or 
indirectly by analysing the structure of their condensed phases and aggregates20.

Results
We use molecular dynamics (MD) simulations to study the deformation of an SPB consisting of a small 
hard colloidal particle gra�ed with a polymer brush of f linear-chain arms each consisting of Nc mono-
mers; temperature was �xed at = /T kB where  is the energy scale of the monomer-monomer repulsion 
(see Methods). �e SPB is con�ned to a slit formed by parallel immobile walls (Fig. 1a) and its deforma-
tion is quanti�ed by the ratio of central lateral extension and indentation denoted by ζ. To evaluate it, 
we computed the dimensions of the SPB based on monomer densities projected on the axes of the 
coordinate system centered at the SPB and oriented such that the z axis is perpendicular to the walls; 
note that the projected densities , ,c cx y  and cz are measured in units of 1/length rather than in units of 
1/volume as the usual monomer density c. SPB half-thickness is given by the transverse semiaxis z 
de�ned by ∫= ( )c z z zdz z

2 2  and the in-plane semiaxes x and y corresponding to the waist radius are 
introduced analogously. �e reduced central lateral extension then reads

( )
ζ = −

+ / −

−
,

( )

2

1

x y

z

0

0

where 0 is the radius of an isolated SPB de�ned by ∫π= ( / ) ( )c r r r4 3 d0
2 4  evaluated in absence of 

walls. We �nd that our ζ  is more meaningful than its analogue based on the eigenvalues of the radius of 
gyration tensor, which carries a larger numerical error at small compressions.

Figure 1b shows the reduced central lateral extension ζ  for thin (Nc = 30) and thick (Nc = 50) SPBs 
with functionalities f =  30, 40, 50, and 60; the screening length κ−1 of the Yukawa wall potential is a small 
fraction of the radius of gyration of an isolated SPB Rg

0 ( . R0 05 g
0 in the thin and . R0 04 g

0 in the thick SPB). 
�e eight datasets plotted against reduced slit width /L R2 g

0 collapse surprisingly well despite considerable 
variation of chain length Nc and functionality f, and they reveal three distinct deformation regimes.

At small compressions the MD results are rather scattered due to smallness of both numerator and 
denominator in equation (1) but they still reveal a knee-like increase of ζ  clearly visible in the two f =  60 
datasets replotted in Fig. 2a. �is behaviour is additionally con�rmed by the self-consistent �eld theory 
(SCF; see Methods). SCF results shown in the inset to Fig. 1b agree well with the MD data but are con-
siderably less noisy, emphasising the knee-like onset of deformation.

�e narrow small-compression regime is followed by a broad, virtually linear variation of ζ  extending 
from reduced slit width /L R2 g

0 of about 1.6 down to about 0.7. At / ≅ .L R2 0 5g
0 , the SPBs undergo a 

transition to the large-compression regime characterised by a steep increase of ζ  upon compression.
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Figure 1. Universal deformation behaviour of SPBs. (a) Simulation snapshot of an SPB illustrating the 
geometry studied; monomers are not plotted to scale for clarity. (b) MD reduced central lateral extension ζ  
vs. reduced slit width /L R2 g

0 for thin (Nc =  30, black circles) and thick (Nc =  50, red circles) SPBs of 
functionalities f =  30, 40, 50, and 60. For clarity, only a few representative errorbars are shown. �e scaling-
theory ζ  of a linear chain [equation (2)] is plotted with the dashed line faded at /L R2 g

0 1.5 to emphasize 
that it is valid only in narrow slits. Inset: ζ  obtained from SCF theory for the same f and Nc plotted using the 
same color code; also included is equation (2) (dashed line).
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�e e�ective SPB diameter can be de�ned by the onset of deformation where the slit serves as a ver-
nier caliper. �e f =  60 MD data in Fig.  2a show that ζ  is nonzero at / < .L R2 1 7g

0  so that the e�ective 
diameter is ≅ .

⁎
D R3 4 g

0 whereas the SCF theory puts it at about . R3 8 g
0. �ese values are consistent with 

experiments on linear polymers such as DNA. A single DNA molecule is a�ected by con�nement21 at 
≅ .L R4 7 g

0; this is the e�ective diameter. Since a linear polymer is more anisometric than an SPB, it must 
have a larger ratio /

⁎
D Rg

0 so that our estimates are reasonable. Finally, the auxiliary Yukawa potential 
used in simulations introduces an e�ective slit width smaller than the nominal L by about κ/2 . �us the 
true diameters of the (Nc = 30) and the (Nc = 50) SPB are smaller than the above D

*
 by about . R0 10 g

0 
and . R0 08 g

0, respectively.
�e remarkable universality of the SPB deformation must stem from a basic feature of polymers, and 

it is instructive to begin understanding it by a scaling-theory estimate of ζ  for a single linear chain. In 
severe con�nement22, the in-plane diameter of the chain is ∼ − / /D L N1 4 3 4 whereas its transverse size is 
∼⊥D L, which gives
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ζ ≅ −

/ −

/ − ( )

− /
L R
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2 1 2
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g
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0

irrespective of chain length. �e dashed line in Fig. 1b shows that this result is in good semiquantitative 
agreement with the MD data although it relies on the blob picture of a linear chain with excluded-volume 
interactions rather than on the geometrically more involved blob analysis of the deformation of a multi-
arm brush23. �e agreement suggests that it is worthwhile seeking a coarse-grained interpretation that 
does not depend on the details of the macromolecular architecture, and here we propose two comple-
mentary continuum theories.

Liquid-drop model. �e small- and the intermediate-compression regimes are captured very well by 
a model where the SPB is viewed as a liquid drop of volume V and area A characterised by a phenom-
enological free energy
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Figure 2. Liquid-drop/so�-ball �t. (a) Reduced central lateral extension of Nc =  30 and Nc =  50 f =  60 SPB 
(circles) and the best �t combining the Ψ = .0 6 liquid-drop model at / > .L R2 0 5g

0  (blue line) with ν = .0 3 
so�-ball model at / < .L R2 0 5g

0  (green line). (b) Liquid-drop ζ  for Ψ = . , . ,0 4 0 6  and 0.8 (blue lines) and the 
so�-ball ζ  for ν = . , . ,0 27 0 3  and 0.3 (green lines). �e former does not reproduce the MD results at small 
/L R2 g

0 0.5 even if Ψ departs from the best-�t value of 0.6, and the latter predicts too small a central lateral 
extension in the small- and the intermediate-deformation regime irrespective of the value of ν. Each set of 
curves is faded at reduced slit widths where the respective model does not apply. �e best-�t curves from 
panel a are replotted with thick lines.



www.nature.com/scientificreports/

4SCIENTIFIC REPORTS | 5:15854 | DOI: 10.1038/srep15854

χ γ=




− −





+ .

( )

−F V V V
V

V
Aln

3TLD
1

0 0
0

Here γ is the surface tension and V0 is the reference volume where the pressure within the drop given 
by the Murnaghan equation of state24 χ= ( / − )−p V V 1

T
1

0  vanishes in absence of surface tension so that 
χ

T
 is the isothermal compressibility of the drop at p =  0 and γ =  0. First proposed for hydrostatic com-

pression of elemental substances24 and previously considered in models of compressible rubber25, this 
equation captures the essential physics of simple �uids. �e ideal-gas-like term ensures that the pressure 
diverges at small volumes, thereby phenomenologically accounting for the repulsive interparticle forces, 
whereas the negative, volume-independent term represents the e�ect of the cohesive interactions.

Equation (3) contains a single surface term although it could be split into two contributions corre-
sponding to the free surface of the brush and to the brush-wall contact zone. Such a generalization is 
justi�ed even in inert walls studied here, yet we stick to the more transparent single-surface-tension 
variant of the model because it already o�ers a very accurate interpretation of the shape of the con�ned 
SPB as shown below. Within this model, the deformation of the drop is controlled by a single dimen-
sionless parameter

γχ
Ψ =

( )R

2

4
T

0

equal to twice the ratio of the Egelsta�-Widom length26 γχ≡
TEW  and the reference drop radius 

π= ( / ) /R V3 40 0
1 3.

�e reference volume V0 can be thought of as a spherical region of the liquid of radius R0 far from 
any con�ning walls, which is surrounded by a mathematical surface without tension. Once this sphere is 
endowed with surface tension γ, its radius shrinks from R0 to a new value = / <

⁎ ⁎
R D R2 0, giving rise to 

a Laplace pressure di�erence across the surface. From equation (3), it is straightforward to evaluate the 
shrinking factor λ ≡ /Ψ ⁎

R R0 by minimizing FLD for spherical shapes, yielding

λ −
λ
+ Ψλ = .
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Ψ

Ψ
Ψ

1
0

5
2

For an incompressible �uid where Ψ = 0, the drop does not shrink at all and λ =
Ψ

1. It follows that 
γ χΨ = λ ( / )Ψ ⁎

R2
T

, the term in the parenthesis representing the Laplace pressure. Unlike in ordinary 
liquids, in which the drop size R

*
 can be arbitrarily large, for spherical polymer brushes R

*
 is a length-scale 

determined by the brush architecture, f and Nc. Accordingly, it is physically meaningful to treat Ψ  rather 
than EW as an intrinsic material parameter, and we refer to it as the reduced Egelsta�-Widom length. It 
is also convenient to de�ne the deformation free energy, FLD

def , as the di�erence between the liquid-drop 
free energy of a con�ned drop and that of a free drop of radius R

*
. From equation (3) we obtain
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where V
*
 and A

*
 are the volume and surface area of the drop of radius R

*
, respectively, and the energy 

scale U is given by

π

χ
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3

Note that in this way, the reference lengthscale R0 has completely dropped out as it should. �e model 
is fully described by two parameters, the reduced Egelsta�-Widom length Ψ  which sets the shape of the 
deformation and U which sets the overall scale of the energy penalty to compress the drop.

In Fig. 2a we compare the f =  60 MD data to the Ψ  =  0.6 liquid-drop ζ  calculated from the semiaxes 
of the drop which were obtained numerically using Surface Evolver27 (see Methods). �e model repro-
duces very well the small- and the intermediate-compression regimes at slit widths ranging from 100% 
down to about 30% of the e�ective diameter 

⁎
D . Note that Ψ is essentially the sole �tting parameter as 

the MD data are consistent only with very limited variations of 
⁎

D ; here we used = .
⁎

D R3 42 g
0.

In the large-compression regime the model is no longer suitable. �is is shown by the continuation 
of the best-�t Ψ = .0 6 liquid-drop ζ  at small slit widths / < .L R2 0 5g

0  plotted in Fig. 2b, which underesti-
mates waist extension increasingly more as L is decreased and leads us to the condition that in this 
regime the behaviour of the SPB is qualitatively di�erent. Figure  2b also demonstrates that the small 
spread of the eight MD datasets in Fig.  1b in the small- and intermediate-deformation regime can be 
associated with slight variations of Ψ —an order of magnitude smaller than those shown in Fig. 2b.
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Soft-ball model. To reproduce the deformation at large compressions, we turn to an alternative 
model where the SPB is represented by an elastic solid sphere. �e underlying rationale is that in the 
large-compression regime, chain �uctuations are reduced considerably by a combination of topological 
restrictions due to gra�ing and con�nement, implying that the brush may well behave e�ectively as a 
solid rather than as a liquid.

Among the several types of elasticity of isotropic media, we choose the modi�ed neo-Hookean the-
ory originating in the statistical thermodynamics of a three-dimensional polymer network28. �e corre-
sponding free energy density reads29

ν ν

=
( + )

( − ) +
( − )

( − ) ,
( )

f
Y

I
Y

J
4 1

3
6 1 2

1
8SB

def
1

2

where Y is the Young modulus and ν is the Poisson ratio whereas I1 is the �rst invariant of the isochoric 
part of the Green deformation tensor F FT , F being the deformation gradient, and =J Fdet . Like in the 
liquid-drop model, it would be reasonable to complement the so�-ball elastic energy by the surface 
energy. Yet within the minimal framework this is not needed because shear elasticity alone resists shape 
deformation. To keep the model as simple as possible, we opt to not include the surface tension so that 
the ball shape is controlled solely by the Poisson ratio ν, whereas the deformation energy scales as 

⁎
YD 3.

�e equilibrium shape of the ball at a given L was found by minimizing the elastic energy using the 
FreeFEM+ +  package30 (see Methods). We varied the Poisson ratio so as to obtain an optimal agreement 
at large compressions, �nding that the best-�t value of ν is 0.3 (Fig. 2a); deviations not exceeding 0.01 
are su�cient to explain the small variations of ζ  across the datasets (Fig. 2b). �e failure of the so�-ball 
model in the small- and intermediate-deformation regime, especially at the onset of deformation at 
/ ≅ .L R2 1 7g

0 , can be understood by visualising a slightly compressed sponge ball where stresses due to 
compression are localized right at the two walls and do not reach into the bulk, and the waist diameter 
is thus barely increased. In a liquid drop, on the other hand, any increase of pressure upon compression 
is communicated across all of the volume and thus the waist extension relative to compression is consid-
erable even at small compressions.

Our theoretical description of the MD shape deformation data combines the pre-
dictions of the two models, the liquid-drop/so�-ball transition being at / ≅ .L R2 0 5g

0 . A more detailed 
insight into the transition as well as the SPB structure itself is provided by the monomer density pro�les 
in Fig. 3 which shows the = , =f N60 50c  SPB in slits of width of 20%, 40%, 60%, 80%, and 100% of 
the e�ective diameter. At each slit width, we plot the density isolines at 50%, 10%, and 1% of the maximal 
density at that slit width as well as the density pro�le in the midplane; the MD and the SCF results are 
shown in the top and the bottom half of the panel, respectively. Compared to the MD and SCF density 
isolines are the surfaces of the so�-ball and the liquid-drop model below (the / = %

⁎
L D 20  case) and 

above the transition (the / = %, %, %,
⁎

L D 40 60 80  and 100% cases), respectively.
�e rightmost panel in Fig. 3 shows the SPB at the onset of deformation at / ≅ .L R2 1 72g

0  and 1.9 for 
the MD and the SCF results, respectively. At this slit width, the agreement of the MD and the SCF density 
pro�les is rather good as expected31, the only di�erence being the slightly larger distance between the 1% 
SCF density isoline and the theoretical SPB surface which can be attributed to the fact that the e�ective 
diameter predicted by SCF is larger than that obtained by MD. �e location of the transition from the 
inner, dense region of the SPB and the outer dilute shell with an approximately exponential density 
pro�le coincides with the theoretical surface; on the linear scale of Fig. 3, the small-magnitude exponen-
tial tail is seen as an almost straight vertical segment of the red curves. Also visible is the e�ect of the 
auxiliary Yukawa potential used in MD simulations which produces a depleted subsurface layer close to 
either wall, and a few artifacts of the cubic lattice used in SCF theory (say in the kidney-shaped 50% 
isoline).

As the SPB is compressed, the agreement of the MD and the SCF results is gradually poorer. In part, 
this is due to the approximate treatment of the excluded-volume interactions in the SCF theory31 and 
in part it can be related to the slightly di�erent e�ective SPB diameters and to the di�erent wall types 
used. �is is best seen in the 20% slit-width case where the SCF midplane radial density pro�le is repre-
sentative of the density in the whole SPB whereas the MD pro�le varies considerably with the distance 
from the midplane. Still the MD midplane pro�les show that the boundary of the inner dense region of 
the SPB correlates with the theoretical so�-ball/liquid-drop surface. Also notable is the development of 
the shoulder-like density pro�le in very compressed SPBs signaling a qualitatively di�erent behaviour 
compared to small and intermediate compressions, which is consistent with the so�-ball/liquid-drop 
transition.

Deformation energy. �e coarse-grained picture is completed by comparing the MD deformation 
energy to those of the two models. To this end, the e�ect of the Yukawa wall potential is taken into 
account by recognizing that at small slit widths L R2 g

0 the Yukawa potential penetrates across the 
whole slit. �e corresponding energy increase can be estimated by the magnitude of the potential in the 
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center which is proportional to κ(− / )/L Lexp 2 . Figure 4 shows the MD energy for the Nc =  30 and the 
Nc =  50 f = 60 SPBs as well as the �ts obtained by combining the liquid-drop and the so�-ball energies 
with the above Yukawa term. �e agreement is very good over almost three orders of magnitude, the 
only systematic but insigni�cant deviation being the behaviour at > ≅ .

⁎
L D R3 42 g

0 where the liquid-drop 
and the so�-ball energies vanish whereas the MD energy remains �nite. A close inspection reveals a 
minute discontinuity in the deformation energy at the liquid-drop/so�-ball transition, which may be due 
to the approximate treatment of the Yukawa potential.

�e best �ts of deformation free energy in Fig. 4 �x the characteristic energy scales of the two models, 
U [equation (7)] and 

⁎
YD 3. Together with the already known values of the kinematic parameters Ψ = .0 6 

and ν = .0 3 and an estimated SPB size, the energy scales can then be used to determine the liquid-drop 
compressibility and surface tension as well as the so�-ball Young modulus. Assuming that =

⁎
D 20 nm, 

we obtain χ ≅ . × − −1 5 10 Pa
T

6 1, γ ≅ /2 mJ m
2, and ≅Y 1 MPa consistent with microindentation 

experiments on polymer nanodroplets9. �e liquid-drop χ
T

 is just a little larger than the so�-ball com-
pressibility ν= ( − )/ = . ×− − −K Y3 1 2 1 2 10 Pa1 6 1 in agreement with the expectation that upon the 
so�-ball/liquid-drop transition, the compressibility of the SPB should not change very dramatically.

Scaling theory. Our numerical analysis revealed a remarkable collapse of SPB deformation data. �e 
eight datasets shown in Fig. 1b cover a broad range of experimentally relevant SPB functionalities and 
two chain lengths large enough so as to ensure that the reported behaviour is not a�ected by the mon-
omer size. Here we provide a scaling-theory interpretation of the data collapse, which suggests that our 
observations are universal.

Our starting point is the des Cloizeaux formula for the osmotic pressure Π of semidilute polymer 
solutions, φΠ / /k TaB

15 4 9 4, where φ is the monomer concentration and a is the monomer size32. �is 
result can be used to calculate the reduced Egelsta�-Widom length [equation (4)] recast as 

χ χΨ = λ Π ≅ ΠΨ T T
 so as to emphasise that the SPB surface tension is related to the osmotic pressure 

by the Young-Laplace equation; here we note that for Ψ = .0 6, equation (5) yields λ = .Ψ 0 835, a factor 
of order unity which plays no role in the scaling theory. Since the colloid in the center of our SPB is small 
at all Nc and f studied, we can approximate the brush by a star polymer so that φ = /

⁎
f N Vc , V

*
 being 

the star volume corresponding precisely to the volume of uncon�ned spherical liquid drop of radius R
*
. 

�us, the osmotic pressure scales as

Π ∼ ( ) , ( )
/ / − /

⁎
k Ta f N V 9cB

15 4 9 4 9 4

and

χ = −






∂Π

∂






∼ ( ) ( ) .

( )

−

−

− − / − / /
⁎

⁎

⁎
V

V
k T a f N V

10
T

T

c
1

1

B
1 15 4 9 4 9 4

�is implies that χ ∼ /Π1
T

 and thus the reduced Egelsta�-Widom length is a quantity of order unity 
that does not depend on functionality nor on chain length,

Ψ ∼ . ( )f N 11c
0 0

�is �nding is in very good agreement with the data in Fig. 1b and it establishes a universality for the 
shapes of starlike spherical polymer brushes under compression, independently of their functionality and 

MD

SCF

40% 60% 80% 100%20%

slit width/diameter

Figure 3. Shape of deformed SPB. Gray lines show the monomer density isolines corresponding to 50%, 
10%, and 1% of the maximal density of the thick Nc =  50, f =  60 SPB at �ve relative slit widths, and red 
curves are midplane radial pro�les. Top and bottom halves shows MD and SCF results, respectively. Also 
plotted are the theoretical SPB contours of the combined so�-ball/liquid-drop model (solid black lines); the 
transition is at / = %

⁎
L D 29 .
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chain length. Note that this prediction is valid for any power-law equation of state rather than just for the 
des Cloizeaux formula, and it can be attributed to the self-similar chain structure. �e small deviations 
from the perfect data collapse may be due to the presence of the colloid because its size is the same in 
all SPBs studied here whereas the radius of SPB diameter varies with Nc and f.

Within the same theory, we can further extract the dependence of the energy scale U [equation (7)] 
on the brush parameters. Since χ∼ /

⁎
U R

T
3 , using the scaling of brush radius as17 ∼ / /

⁎
R af Nc

1 5 3 5 and 
equation (10) we readily obtain

∼ . ( )/U k Tf 12B
3 2

�is is a very rewarding result, as it coincides with the scaling of both the pairwise e�ective inter-
action potential between star polymers33 and between a star and a single wall34. Indeed, in the limit of 
weak compressions, the overall deformation energy penalty paid by the brush should be pairwise addi-
tive; accordingly, the elastic theory put forward should reproduce the dependence of the interaction on 
f, as it does. Moreover, and once more in agreement with the aforementioned e�ective potential, there 
is no dependence of the energy scale on Nc. �is �nding is also con�rmed in our simulations: as can be 
seen in Fig.  2b, the deformation energy curves for the two brushes of the same f but di�erent Nc run 
very close to one another for a broad range of deformations in which the liquid drop model is valid. �e 
small deviations seen are of order 10% and can be attributed to the rigid core which makes the thinner 
brush e�ectively less compressible.

Finally, we can now provide an independent estimate of the surface tension and compressibility, 
based on purely theoretical arguments, and compare with the values obtained by the �t. From equations 
(4,7,11,12), we readily obtain the scaling laws

χ γ∼ ∼ .
( )

− / /⁎

⁎

R

k T
f

k T

R
fand

13
T

3

B

3 2 B
2

3 2

Using typical values R
* =  10  nm and f =  50, we �nd, at room temperature, χ ≅ − −10 Pa

T
6 1 and 

γ ≅ /10 mJ m2, in excellent agreement with results from �ts of the deformation energy.

Discussion
�e universal value of the reduced Egelsta�-Widom length Ψ in SPBs is the most important result of the 
scaling theory obtained by approximating the brush by a star polymer and disregarding the hard colloidal 
core. Had the core been taken into account, the overall SPB compressibility and thus Ψ should be smaller, 
leading to a departure from universality. A sizable core is also expected to shi� the liquid-drop/so� ball 
transition to narrower slits by excluding the chains from the centre where a large enough local monomer 
density could otherwise be reached for geometrical reasons. On the other hand, Ψ can also be controlled 
by intermonomer interaction and by the solvent, a�ecting both e�ective surface tension and compressi-
bility of the SPB. �us it seems reasonable to theoretically explore the liquid-drop model more closely 
for a broad range of Ψ covering not only the regime directly applicable to our SPBs but also the incom-
pressible limit at Ψ 1 where the brush is deformed at constant volume and the tension-dominated 
limit at Ψ 1 where the shape of the SPB is dictated primarily by surface tension.
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Figure 5a shows diametrally compressed drops of Ψ = .0 01 and 100 representing the incompressible 
and the tension-dominated regime, respectively. At small compressions, the di�erences between their 
shapes are hardly visible as seen by comparing the contours at slit width of 80% of the reference diameter 
D
*
. But at large compressions the almost incompressible, constant-volume Ψ = .0 01 drop expands very 

dramatically, assuming a pronounced pancake-like shape at slit widths below about 40% of D
*
, whereas 

the in-plane diameter of the tension-dominated Ψ = 100 drop is only slightly larger than D
*
.

�is insight is quantitatively elaborated in Fig. 5b which shows the theoretical reduced central lateral 
extension ζ  of a diametrally compressed liquid drop for Ψ = . , . , , ,0 01 0 1 1 10  and 100. In tension-dominated 
drops with Ψ 1, ζ  is small and barely depends on the ratio of slit width and reference drop diameter 
/

⁎
L D  whereas in incompressible drops of Ψ 1, ζ  diverges at vanishing slit widths. In the incompress-
ible limit Ψ = 0, drop shape can be approximated by a jelly-doughnut shape with �at faces pressed 
against the walls and a rim of semi-circular cross-section, allowing ζ  to be calculated analytically. �e 
result (dashed line in Fig. 5b) is characterized by a − /L 1 2 divergence in thin slits as well as a �nite ζ  at 
in�nitesimally small compressions, which is qualitatively consistent with the numerically obtained 
knee-like onset of deformation (Fig. 1b). �e red shading in Fig. 5b represents the region around Ψ = .0 6 
characteristic of our SPBs, showing that they are halfway between the incompressible and the 
tension-dominated regime.

�e di�erential response of small- and large-Ψ drops upon compression is even more pronounced in 
drops con�ned from all sides rather than just between two walls. �is can be illustrated by a drop within 
a cube-shaped container (Fig. 5c). �e nearly incompressible Ψ = .0 01 drop develops large facets pressed 
against container walls even at small compressions—as soon as cube edge length L reaches 80% of the 
reference diameter D

*
, facets add to 90% of the total drop area. On the other hand, in the tension-dominated 

Ψ = 100 drop this happens only at / = %
⁎

L D 40 , which corresponds to an eightfold larger density.
�ese di�erences are important because shape deformation similar to faceting is expected to take 

place in dense suspensions. Here SPBs are pressed against each other, which too can be described by the 
liquid-drop model (or, more generally, the combined liquid-drop/so�-ball model) much like repulsion 
between a star polymer and a hard wall also covers the interaction between two star polymers at small 
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center-to-center distances34. �us our coarse-grained framework may be used to interpret the structure 
of crystalline35, quasicrystalline35,36, and glassy37,38 nanocolloidal systems as well as certain aspects of their 
unique rheology39, the value of the reduced Egelsta�-Widom length Ψ being the key material 
parameter.

An interesting direct application of our results addresses the morphologies of aggregated 
polymer-gra�ed nanoparticles, which include string- and sheet-like aggregates in addition to the more 
common spherical bulk-like clusters and dispersed solutions20. By using the detailed description of 
brush deformation in the slit we can readily analyse the lateral repulsive barrier in string-like aggregates, 
thereby complementing the scaling-theory40 and patchy-particle41 interpretations of their stability. Like 
in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the barrier appears because of competition 
of the strong but short-ranged van der Waals attraction and a repulsive interaction between them, except 
that the latter is due to brush deformation rather than electrostatic.

To see how this happens, consider two isolated nearby SPBs (Fig. 6a). Brought into contact by the van 
der Waals attraction (assumed for simplicity to be dominated by interaction between nanoparticle cores), 
they will interpenetrate each other as long as the e�ective elastic modulus of the brush is not too large. 
Elastic repulsion, which is approximately proportional to a power of indentation with an exponent of 
2.1 (inset to Fig. 2b), will merely reduce the magnitude of attraction and the SPBs will eventually form a 
core-to-core packed dimer with somewhat deformed brushes. In a similar fashion, a third, fourth… SPB 
may approach the aggregate, and it is intuitively clear that the most favorable point of attachment is at 
the end of the string where the central SPB is thinnest40.

Let us substantiate this expectation by an argument based on the transverse extension of SPBs in the 
string, which are deformed as if they were con�ned to a slit. �e extension depends on the lengthwise 
compression dictated by the ratio of core and brush diameters /

⁎
D Dcore . For example, if / = %

⁎
D D 35core  

then the maximal lengthwise compression is − / = %
⁎

D D1 65core , and our results suggest that the waist 
of a Ψ = .0 6 SPB is dilated by about δ ≅ . × % = %

⁎ ⁎
D D D0 4 65 26  because ζ = .0 4 at this slit width 

(Fig. 1b). For another SPB approaching the string from the side, the distance upon contact is thus larger 
than D

*
 by δ / = %

⁎
D D2 13  (Fig. 5b).

�is may not seem much but two important factors come into play that both contribute to the stabili-
sation of the string. Firstly, the van der Waals interaction is a very steep function of separation and the 
Hamaker theory predicts that at this larger distance, the core-core attraction between an approaching SPB 
and a member of the string is only about 46% of the attraction between two SPBs separated by D

*
. Secondly, 
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Figure 6. Lateral barrier in string-like aggregates. (a) Attraction between isolated SPBs (red line) is 
weakened by the elastic repulsion (black line) but in so� enough brushes the total potential (green line) is 
attractive. (b) Due to lateral extension of SPBs in a string, potential felt by an approaching SPB features a 
barrier and a local minimum like in the DLVO theory. �e ratio of deformation energy scale U [equation 
(7)] and the Hamaker constant was tuned such that the potentials in panels a and b are monotonic and non-
monotonic, respectively.
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the con�nement of all f chains to a pancake-shaped quasi-two-dimensional region results in an e�ectively 
larger functionality, and thus in a decrease of brush compressibility χ ∼ − /f

T
3 2. Provided that χ

T
 is large 

enough, this may lead to a total potential that is qualitatively di�erent from that in Fig.  5a because the 
brush-brush repulsion produces a barrier separating the unbound state from the global minimum of 
core-to-core packed SPBs. If higher than the thermal energy, the barrier prevents the formation of sheet- 
and bulklike aggregates, thereby stabilising strings by a patently many-body mechanism. Alternatively, if 
the barrier is still not high enough, then aggregation of brushes will also start in a second dimension, 
leading to the formation of sheets and pushing the SPBs out in the direction perpendicular to the sheets. 
�e two stabilising mechanisms mentioned above will be activated again, potentially preventing the appear-
ance of bulk aggregates. On the other extreme, for f 1 and very long chains, the chain length itself 
provides an e�ective stabilisation against coagulation, and a well-dispersed system results.

In conclusion, the elasticity of complex nanoparticles can be interpreted using coarse-grained notions 
from continuum mechanics, and the excellent agreement of the simulation results with the liquid-drop 
model provides a convincing microscopic support for a previously proposed theory of nanocolloidal 
crystals42. Our stripped-down framework can be re�ned in various ways, say by introducing a di�er-
ential tension of the free and the contact surface of the brush or by a position-dependent Young mod-
ulus which would better correspond to the inhomogeneous monomer density, and it may be extended 
to non-spherical and polyelectrolyte SPBs43 which may behave quite di�erently from our self-avoiding 
brushes as well as to semi�exible and sti� chains44. In addition, the liquid-drop model could be used 
for the description of viscoelastic e�ects expected in a dynamic rather than static deformation of the 
SPB studied here—in this case, one would have to solve the equation of motion for the drop treated as 
a viscous liquid. Such a generalization may well be relevant for the rheology of suspensions of SPB-like 
so� colloids, e.g., star polymers45.

�e most intriguing conceptual conclusion reached is that the deformation behaviour of our SPBs can 
be encoded solely by the reduced Egelsta�-Widom length Ψ, a dimensionless quantity based on the 
product of surface tension and compressibility which is known to have a very similar value in many 
simple liquids26. Moreover, the value of Ψ is universal, i.e., independent of the number of chains in the 
brush and their degree of polymerisation. �ese �ndings call for further veri�cation. In turn, it would 
be interesting to see whether our model also applies to other polymeric nanocolloidal particles such as 
dendrimer and diblock copolymer micelles and if so, how does the reduced Egelsta�-Widom length 
depend on the macromolecular architecture.

Methods
Molecular dynamics simulations. Our spherical brush consists of bead-and-spring chains termi-
nally gra�ed onto a small colloidal particle such that the anchor points are �xed and distributed uni-
formly across the particle. �e main parameters of the SPB are the number of chains f and the number 
of monomers per chain Nc; colloid diameter is σ=D 8core LJ where σLJ is the monomer diameter. Like in 
a related study46, steric monomer-monomer and monomer-colloid interaction is described by the Weeks-
Chandler-Andersen (WCA) repulsion47 and the bonds are modelled by the �nite extensible nonlinear 
elastic (FENE) potential tuned such that the bonds do not cross. Our implicit-solvent scheme and this 
particular choice of interactions are both consistent with the good solvent conditions studied here. �e 
parameters of the FENE potential used were σ= /k 30 LJ

2 (  being the strength of the WCA repulsion) 
and σ= .R 1 50 LJ as suggested in ref. 48. For numerical convenience, the walls are represented by an 
external Yukawa potential49.

Two-step velocity-Verlet molecular dynamics (MD) simulations at a constant temperature = /T kB 
were used to �nd the equilibrium SPB con�gurations in several independent simulation runs [seven for 
all SPBs except for three of the  Nc = 50 SPBs: f =  40 (four) and =f 50 and 60 (six)]. Each run involved 
a gradual decrease of slit width from a large value where the walls did not a�ect the SPB down to σ.8 4 LJ. 

An isolated SPB was initially equilibrated for 5.5 ×  107 time steps (equal to σ /− m k T10 B
4

LJ
2  where m is 

the monomer mass) and then at any given slit width the SPB was equilibrated for 2 ×  106 steps followed 
by 8 ×  106 measurement steps.

�e self-consistent �eld (SCF) theory was implemented on a cubic lat-
tice using the Scheutjens-Fleer scheme46,50. We chose to represent the walls by a hard rather than Yukawa 
potential like in MD simulation. �is allowed us to analyse the e�ect of con�nement and the SPB geom-
etry as transparently as possible and facilitated comparison with the liquid-drop and so�-ball models.

Continuum mechanics models. In both models, walls were represented by hard constraints so as 
to study the model in as simple a geometry as possible; also neglected is the SPB core. �e equilibrium 
shape of the SPB represented by the liquid drop was obtained using the Surface Evolver package27 where 
the drop is represented by a triangulated surface. �e shape was found by relaxation mimicking over-
damped motion of the vertices to minimize the combined bulk and surface energy [equation (3)]; the 
typical number of nodes on the surface was about 3000.
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�e so�-ball model was solved by minimizing equation (8) using the �nite-element method implemented 
within the FreeFEM+ +  package30. �e displacement �eld was computed on a 3D mesh of about 40000 nodes 
using a multifrontal LU factorization solver UMFPACK. At any slit width, equilibrium was achieved using 
Newton-Raphson iteration scheme. To enforce the hard-wall constraints, the magnitude of the parabolic wall 
potential was gradually increased until the corresponding energy penalty was negligible.
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